A new thermoelectric material works efficiently at room temperature at much lower cost

Texas Center for Superconductivity at UH Director Zhifeng Ren, right, and post-doctoral researcher Jun Mao say a new thermoelectric cooling material is inexpensive to produce and works efficiently at room temperature.

Has your steering wheel been too hot to touch this summer? A new thermoelectric material reported in the journal Science could offer relief.

The widespread adoption of thermoelectric devices that can directly convert electricity into thermal energy for cooling and heating has been hindered, in part, by the lack of materials that are both inexpensive and highly efficient at room temperature.

Now researchers from the University of Houston and the Massachusetts Institute of Technology have reported the discovery of a new material that works efficiently at room temperature while requiring almost no costly tellurium, a major component of the current state-of-the-art material.

The work, described in a paper published online by Science Thursday, July 18, has potential applications for keeping electronic devices, vehicles and other components from overheating, said Zhifeng Ren, corresponding author on the work and director of the Texas Center for Superconductivity at UH, where he is also M.D. Anderson Professor of Physics.

“We have produced a new material, which is inexpensive but still performs almost as well as the traditional, more expensive material,” Ren said. The researchers say future work could close the slight performance gap between their new material and the traditional material, a bismuth-tellurium based alloy.

Thermoelectric materials work by exploiting the flow of heat current from a warmer area to a cooler area, and thermoelectric cooling modules operate according to the Peltier effect, which describes the transfer of heat between two electrical junctions.

Thermoelectric materials can also be used to turn waste heat – from power plants, automobile tailpipes and other sources – into electricity, and a number of new materials have been reported for that application, which requires materials to perform at far higher temperatures.

Thermoelectric cooling modules have posed a great challenge because they have to work at cooler temperatures, where the thermoelectric figure-of-merit, or ZT, is low because it is dependent on temperature. The figure-of-merit is a metric used to determine how efficiently a thermoelectric material works.

Despite the challenge, thermoelectric cooling modules also, at least for now, offer more commercial potential, in part because they can operate for a long lifespan at cooler temperatures; thermoelectric power generation is complicated by issues related to the high temperatures at which it operates, including oxidation and thermal instability.

The market for thermoelectric cooling is growing. “The global thermoelectric module market was worth ~0.6 billion US dollars in 2018 and it is anticipated to reach ~1.7 billion US dollars by 2027,” the researchers wrote.

Bismuth-tellurium alloys have been considered the best-performing material for thermal cooling for decades, but the researchers said the high cost of tellurium has limited widespread use. Jun Mao, a post-doctoral researcher at UH and first author on the paper, said the cost has recently dropped but remains about $50/kilogram. That compares to about $6/kilogram for magnesium, a primary component of the new material.

In addition to Ren and Mao, additional authors on the paper include Hangtian Zhu, Zihang Liu and Geethal Amila Gamage, all of the UH Department of Physics and TcSUH, and Zhiwei Ding and Gang Chen of the Department of Mechanical Engineering at the Massachusetts Institute of Technology.

They reported that the new material, comprised of magnesium and bismuth and created in a form carrying a negative charge, known as n-type, was almost as efficient as the traditional bismuth-tellurium material. That, combined with the lower cost, should expand the use of thermoelectric modules for cooling, they said.

To produce a thermoelectric module using the new material, researchers combined it with a positive-charge carrying, or p-type, version of the traditional bismuth-tellurium alloy. Mao said that allowed them to use just half as much tellurium as most current modules.

Because the cost of materials accounts for about one-third of the cost of the device, that savings adds up, he said.

The new material also more successfully maintains electrical contact than most nanostructured materials, the researchers reported.

Learn more: New Low-Cost Thermoelectric Material Works at Room Temperature


The Latest on: Thermoelectric material

via  Bing News


A thermal resonator could enable continuous years-long operation of remote sensing systems without requiring other power sources or batteries

The team’s test device, which has been deployed on the roof of an MIT building for several months, was used to prove the principle behind their new energy-harvesting concept. The test device is the black box at right, behind a weather-monitoring system (white) and a set of test equipment to monitor the device’s performance (larger black case at left).
Image: Justin Raymond

Technology developed at MIT can harness temperature fluctuations of many kinds to produce electricity.

Thermoelectric devices, which can generate power when one side of the device is a different temperature from the other, have been the subject of much research in recent years. Now, a team at MIT has come up with a novel way to convert temperature fluctuations into electrical power. Instead of requiring two different temperature inputs at the same time, the new system takes advantage of the swings in ambient temperature that occur during the day-night cycle.

The new system, called a thermal resonator, could enable continuous, years-long operation of remote sensing systems, for example, without requiring other power sources or batteries, the researchers say.

The findings are being reported in the journal Nature Communications, in a paper by graduate student Anton Cottrill, Carbon P. Dubbs Professor of Chemical Engineering Michael Strano, and seven others in MIT’s Department of Chemical Engineering.

“We basically invented this concept out of whole cloth,” Strano says. “We’ve built the first thermal resonator. It’s something that can sit on a desk and generate energy out of what seems like nothing. We are surrounded by temperature fluctuations of all different frequencies all of the time. These are an untapped source of energy.”

While the power levels generated by the new system so far are modest, the advantage of the thermal resonator is that it does not need direct sunlight; it generates energy from ambient temperature changes, even in the shade. That means it is unaffected by short-term changes in cloud cover, wind conditions, or other environmental conditions, and can be located anywhere that’s convenient — even underneath a solar panel, in perpetual shadow, where it could even allow the solar panel to be more efficient by drawing away waste heat, the researchers say.

The thermal resonator was shown to outperform an identically sized, commercial pyroelectric material — an established method for converting temperature fluctuations to electricity — by factor of more than three in terms of power per area, according to Cottrill.

The researchers realized that to produce power from temperature cycles, they needed a material that is optimized for a little-recognized characteristic called thermal effusivity — a property that describes how readily the material can draw heat from its surroundings or release it. Thermal effusivity combines the properties of thermal conduction (how rapidly heat can propagate through a material) and thermal capacity (how much heat can be stored in a given volume of material). In most materials, if one of these properties is high, the other tends to be low. Ceramics, for example, have high thermal capacity but low conduction.

To get around this, the team created a carefully tailored combination of materials. The basic structure is a metal foam, made of copper or nickel, which is then coated with a layer of graphene to provide even greater thermal conductivity. Then, the foam is infused with a kind of wax called octadecane, a phase-change material, which changes between solid and liquid within a particular range of temperatures chosen for a given application.

A sample of the material made to test the concept showed that, simply in response to a 10-degree-Celsius temperature difference between night and day, the tiny sample of material produced 350 millivolts of potential and 1.3 milliwatts of power — enough to power simple, small environmental sensors or communications systems.

“The phase-change material stores the heat,” says Cottrill, the study’s lead author, “and the graphene gives you very fast conduction” when it comes time to use that heat to produce an electric current.

Essentially, Strano explains, one side of the device captures heat, which then slowly radiates through to the other side. One side always lags behind the other as the system tries to reach equilibrium. This perpetual difference between the two sides can then be harvested through conventional thermoelectrics. The combination of the three materials — metal foam, graphene, and octadecane — makes it “the highest thermal effusivity material in the literature to date,” Strano says.

While the initial testing was done using the 24-hour daily cycle of ambient air temperature, tuning the properties of the material could make it possible to harvest other kinds of temperature cycles, such as the heat from the on-and-off cycling of motors in a refrigerator, or of machinery in industrial plants.

“We’re surrounded by temperature variations and fluctuations, but they haven’t been well-characterized in the environment,” Strano says. This is partly because there was no known way to harness them.

Other approaches have been used to try to draw power from thermal cycles, with pyroelectric devices, for example, but the new system is the first that can be tuned to respond to specific periods of temperature variations, such as the diurnal cycle, the researchers say.

These temperature variations are “untapped energy,” says Cottrill, and could be a complementary energy source in a hybrid system that, by combining multiple pathways for producing power, could keep working even if individual components failed. The research was partly funded by a grant from Saudi Arabia’s King Abdullah University of Science and Technology (KAUST), which hopes to use the system as a way of powering networks of sensors that monitor conditions at oil and gas drilling fields, for example.

“They want orthogonal energy sources,” Cottrill says — that is, ones that are entirely independent of each other, such as fossil fuel generators, solar panels, and this new thermal-cycle power device. Thus, “if one part fails,” for example if solar panels are left in darkness by a sandstorm, “you’ll have this additional mechanism to give power, even if it’s just enough to send out an emergency message.”

Such systems could also provide low-power but long-lasting energy sources for landers or rovers exploring remote locations, including other moons and planets, says Volodymyr Koman, an MIT postdoc and co-author of the new study. For such uses, much of the system could be made from local materials rather than having to be premade, he says.

This approach “is a novel development with a great future,” says Kourosh Kalantar-zadeh, a distinguished professor of engineering at RMIT University in Melbourne, Australia, who was not involved in this work. “It can potentially play an unexpected role in complementary energy harvesting units.”

He adds, “To compete with other energy harvesting technologies, always higher voltages and powers are demanded. However, I personally feel that it is quite possible to gain a lot more out of this by investing more into the concept. … It is an attractive technology which will be potentially followed by many others in the near future.”

Learn more: System draws power from daily temperature swings


The Latest on: Thermal resonator

via  Bing News



A surprising material that is the best in the world at converting waste heat to useful electricity

ThermoelectricPowerGen (Photo credit: Wikipedia)

One strategy for addressing the world’s energy crisis is to stop wasting so much energy when producing and using it

One strategy for addressing the world’s energy crisis is to stop wasting so much energy when producing and using it, which can happen in coal-fired power plants or transportation. Nearly two-thirds of energy input is lost as waste heat.

Now Northwestern University scientists have discovered a surprising material that is the best in the world at converting waste heat to useful electricity. This outstanding property could be exploited in solid-state thermoelectric devices in a variety of industries, with potentially enormous energy savings.

An interdisciplinary team led by inorganic chemist Mercouri G. Kanatzidis found the crystal form of the chemical compound tin selenide conducts heat so poorly through its lattice structure that it is the most efficient thermoelectric material known. Unlike most thermoelectric materials, tin selenide has a simple structure, much like that of an accordion, which provides the key to its exceptional properties.

The efficiency of waste heat conversion in thermoelectrics is reflected by its figure of merit, called ZT. Tin selenide exhibits a ZT of 2.6, the highest reported to date at around 650 degrees Celsius. The material’s extremely low thermal conductivity boosts the ZT to this high level, while still retaining good electrical conductivity.

The ZT metric represents a ratio of electrical conductivity and thermoelectric power in the numerator (which needs to be high) and thermal conductivity in the denominator (which needs to be low).

Potential areas of application for the high-temperature thermoelectric material include the automobile industry (a significant amount of gasoline’s potential energy goes out of a vehicle’s tailpipe), heavy manufacturing industries (such as glass and brick making, refineries, coal- and gas-fired power plants) and places where large combustion engines operate continuously (such as in large ships and tankers).

“A good thermoelectric material is a business proposition — as much commercial as it is scientific,” said Vinayak P. Dravid, a senior researcher on the team. “You don’t have to convert much of the world’s wasted energy into useful energy to make a material very exciting. We need a portfolio of solutions to the energy problem, and thermoelectric materials can play an important role.”

Dravid is the Abraham Harris Professor of Materials Science and Engineering at the McCormick School of Engineering and Applied Science.

Details of tin selenide, probably among the world’s least thermally conductive crystalline materials, are published today (April 17) by the journal Nature.

The discovery comes less than two years after the same research group broke the world record with another thermoelectric material they developed in the lab with a ZT of 2.2.

“The inefficiency of current thermoelectric materials has limited their commercial use,” said Kanatzidis, the Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences. “We expect a tin selenide system implemented in thermoelectric devices to be more efficient than other systems in converting waste heat to useful electricity.”

The material, despite having a very simple structure, conducts heat so poorly that even moderate thermoelectric power and electrical conductivity are enough to provide high thermoelectric performance at high temperature.

The researchers did not expect to find tin selenide to be such a good thermoelectric material.

“Lidong Zhao, the first author of the paper, deserves a lot of credit for looking at tin selenide,” said Kanatzidis, who also holds a joint appointment at Argonne National Laboratory. ”He is a good example of the curious people we try to attract to Northwestern.”

Zhao, a postdoctoral fellow in Kanatzidis’ research group, grew crystals of tin selenide and measured the crystal in three directions, along each axis. He found that the thermal conductivity was “ridiculously low” along the a-axis but also along the other two axes.

“The results are eye-opening because they point in a direction others would not look,” Dravid said. “This material has the potential to be applied to other areas, such as thermal barrier coatings.”

Kanatzidis and Zhao identified the potential of the material intuitively by looking at its crystal structure. They confirmed its exceptional thermoelectric properties and then turned to Dravid and Christopher M. Wolverton to uncover how the crystal was behaving and why.

“We found that the bonds between some atoms in this compound are very weak and lead to exceptionally soft, floppy atomic vibrations,” said Wolverton, a senior author of the paper and a professor of materials science at the McCormick School.

Wolverton, an expert in computational materials science related to energy applications, showed that the accordion-like structure and weak bonds lead to atoms that vibrate very slowly.

“These very weak vibrations are responsible for the inability of the material to conduct heat,” Wolverton said. “Our theory provides the scientific basis as to why the material behaves the way it does and also provides us with a new direction to search for even higher-efficiency materials.”

“Tin selenide reminds us of that popular TV commercial for a memory foam mattress in which a person can jump on one side of the mattress while a glass of wine a few feet away is unperturbed — the vibrations do not reach the glass because of the mattress’ material,” Kanatzidis said.

“Similarly, in tin selenide, heat cannot travel well through this material because its soft, accordion-like structure doesn’t transmit vibrations well,” he said. “One side of tin selenide gets hot — where the waste heat is, for example — while the other side remains cool. This enables the hot side to generate useful electricity.”

Read more . . .


The Latest on: Thermoelectric

via  Bing News


Liquid-like compound could lead to better thermoelectric devices

Its figure of merit (a rating for thermoelectric efficiency) is one of the highest ever recorded for a bulk material

Thermoelectric materials work by converting differences in temperature into electric voltage. If two parts of such a material experience significantly different temperatures, electrons within it will flow from the warmer part to the cooler, creating an electrical current in the process. Using these materials, electricity could be generated by the temperature differences on the inside and outside of jackets, within car engines, or even between the human body and the air around it … just to list a few examples. An international team of scientists have now discovered that an existing material, which behaves like a liquid but isn’t one, displays particularly impressive thermoelectric properties.

The material is actually a solid, consisting of copper and selenium. The selenium takes the form of a rigid crystalline lattice, which the copper atoms easily flow through – it’s described as being similar in principle to a wet sponge, with the copper playing the part of the water.

Because the thermoelectric effect requires there to be a wide temperature gradient, materials that conduct heat are not well-suited to the task – the more a material is able to disperse heat throughout itself, the sooner that material all reaches one uniform temperature. The material should be a good conductor of electricity, however, as the electrons need to be able to move through it with little resistance.

The copper-selenium material meets both criteria. The free and loosely-flowing copper atoms help drive down its thermal conductivity, while the crystal structure of the selenium boosts its electrical conductivity. According to the scientists, its figure of merit (a rating for thermoelectric efficiency) is one of the highest ever recorded for a bulk material.

Read more  . . .

via Gizmag – Ben Coxworth

Bookmark this page for “thermoelectric devices” and check back regularly as these articles update on a very frequent basis. The view is set to “news”. Try clicking on “video” and “2” for more articles.