Dive of the RoboBee

via Harvard SEAS

via Harvard SEAS

HARVARD MICROROBOTICS LAB DEVELOPS FIRST INSECT-SIZE ROBOT CAPABLE OF FLYING AND SWIMMING

In 1939, a Russian engineer proposed a “flying submarine” — a vehicle that can seamlessly transition from air to water and back again. While it may sound like something out of a James Bond film, engineers have been trying to design functional aerial-aquatic vehicles for decades with little success. Now, engineers may be one step closer to the elusive flying submarine.

The biggest challenge is conflicting design requirements: aerial vehicles require large airfoils like wings or sails to generate lift while underwater vehicles need to minimize surface area to reduce drag.

To solve this engineers at the Harvard John A. Paulson School of Engineering and Applied Science (SEAS) took a clue from puffins. The birds with flamboyant beaks are one of nature’s most adept hybrid vehicles, employing similar flapping motions to propel themselves through air as through water.

“Through various theoretical, computational and experimental studies, we found that the mechanics of flapping propulsion are actually very similar in air and in water,” said Kevin Chen, a graduate student in the Harvard Microrobotics Lab at SEAS. “In both cases, the wing is moving back and forth. The only difference is the speed at which the wing flaps.”

Coming from the Harvard Microrobotics Lab, this discovery can only mean one thing: swimming RoboBees.

For the first time, researchers at SEAS have demonstrated a flying, swimming, insect-like robot — paving the way for future duel aerial aquatic robotic vehicles.

Read more: Dive of the RoboBee

 

 

The Latest on: Insect-like robot

via  Bing News

 

This Robotic Bee Just Took Flight, To Pollinate Crops And (Maybe) Spy On You

1682095-inline-robobee-zoom

The quarter-sized RoboBee looks like a fly, but it was designed to save us from colony collapse disorder. If the bees die, we have a robot backup.

We take for granted the effortless flight of insects, thinking nothing of swatting a pesky fly and crushing its wings. But this insect is a model of complexity. After 12 years of work, researchers at the Harvard School of Engineering and Applied Sciences have succeeded in creating a fly-like robot. And in early May, they announced that their tiny RoboBee (yes, it’s called a RoboBee even though it’s based on the mechanics of a fly) took flight. In the future, that could mean big things for everything from disaster relief to colony collapse disorder.

The RoboBee isn’t the only miniature flying robot in existence, but the 80-milligram, quarter-sized robot is certainly one of the smallest. “The motivations are really thinking about this as a platform to drive a host of really challenging open questions and drive new technology and engineering,” says Harvard professor Robert Wood, the engineering team lead for the project.

When Wood and his colleagues first set out to create a robotic fly, there were no off the shelf parts for them to use. “There were no motors small enough, no sensors that could fit on board. The microcontrollers, the microprocessors–everything had to be developed fresh,” says Wood. As a result, the RoboBee project has led to numerous innovations, including vision sensors for the bot, high power density piezoelectric actuators (ceramic strips that expand and contract when exposed to an electrical field), and a new kind of rapid manufacturing that involves layering laser-cut materials that fold like a pop-up book. The actuators assist with the bot’s wing-flapping, while the vision sensors monitor the world in relation to the RoboBee.

“Manufacturing took us quite awhile. Then it was control, how do you design the thing so we can fly it around, and the next one is going to be power, how we develop and integrate power sources,” says Wood. In a paper recently published by Science, the researchers describe the RoboBee’s power quandary: it can fly for just 20 seconds–and that’s while it’s tethered to a power source. “Batteries don’t exist at the size that we would want,” explains Wood. The researchers explain further in the report: ” If we implement on-board power with current technologies, we estimate no more than a few minutes of untethered, powered flight. Long duration power autonomy awaits advances in small, high-energy-density power sources.”

Read more . . .

via FastCoExist – ARIEL SCHWARTZ
 

The Latest Streaming News: Robotic Bee updated minute-by-minute

Bookmark this page and come back often
 

Latest NEWS

 

Latest VIDEO

 

The Latest from the BLOGOSPHERE

Robotic insects make first controlled flight

130502142649-large
In culmination of a decade’s work, RoboBees achieve vertical takeoff, hovering, and steering

Last summer, in a Harvard robotics laboratory, an insect took flight. Half the size of a paper clip, weighing less than a tenth of a gram, it leapt a few inches, hovered for a moment on fragile, flapping wings, and then sped along a preset route through the air.

Like a proud parent watching a child take its first steps, graduate student Pakpong Chirarattananon immediately captured a video of the fledgling and emailed it to his adviser and colleagues at 3 a.m. — subject line: “Flight of the RoboBee.”

“I was so excited, I couldn’t sleep,” recalls Chirarattananon, co-lead author of a paper published this week in Science.

The demonstration of the first controlled flight of an insect-sized robot is the culmination of more than a decade’s work, led by researchers at the Harvard School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering at Harvard.

“This is what I have been trying to do for literally the last 12 years,” saysRobert J. Wood, Charles River Professor of Engineering and Applied Sciences at SEAS, Wyss core faculty member, and principal investigator of the National Science Foundation-supported RoboBee project. “It’s really only because of this lab’s recent breakthroughs in manufacturing, materials, and design that we have even been able to try this. And it just worked, spectacularly well.”

Inspired by the biology of a fly, with submillimeter-scale anatomy and two wafer-thin wings that flap almost invisibly, 120 times per second, the tiny device not only represents the absolute cutting edge of micromanufacturing and control systems, but is an aspiration that has impelled innovation in these fields by dozens of researchers across Harvard for years.

“We had to develop solutions from scratch, for everything,” explains Wood. “We would get one component working, but when we moved onto the next, five new problems would arise. It was a moving target.”

Flight muscles, for instance, don’t come prepackaged for robots the size of a fingertip.

“Large robots can run on electromagnetic motors, but at this small scale you have to come up with an alternative, and there wasn’t one,” says co-lead author Kevin Y. Ma, a graduate student at SEAS.

The tiny robot flaps its wings with piezoelectric actuators — strips of ceramic that expand and contract when an electric field is applied. Thin hinges of plastic embedded within the carbon fiber body frame serve as joints, and a delicately balanced control system commands the rotational motions in the flapping-wing robot, with each wing controlled independently in real time.

At tiny scales, small changes in airflow can have an outsized effect on flight dynamics, and the control system has to react that much faster to remain stable.

The robotic insects also take advantage of an ingenious pop-up manufacturing technique that was developed by Wood’s team in 2011. Sheets of various laser-cut materials are layered and sandwiched together into a thin, flat plate that folds up like a child’s pop-up book into the complete electromechanical structure.

The quick, step-by-step process replaces what used to be a painstaking manual art and allows Wood’s team to use more robust materials in new combinations, while improving the overall precision of each device.

“We can now very rapidly build reliable prototypes, which allows us to be more aggressive in how we test them,” says Ma, adding that the team has gone through 20 prototypes in just the past six months.

Applications of the RoboBee project could include distributed environmental monitoring, search-and-rescue operations, or assistance with crop pollination, but the materials, fabrication techniques, and components that emerge along the way might prove to be even more significant. For example, the pop-up manufacturing process could enable a new class of complex medical devices. Harvard’s Office of Technology Development, in collaboration with Harvard SEAS and the Wyss Institute, is already in the process of commercializing some of the underlying technologies.

“Harnessing biology to solve real-world problems is what the Wyss Institute is all about,” says Wyss Founding Director Don Ingber. “This work is a beautiful example of how bringing together scientists and engineers from multiple disciplines to carry out research inspired by nature and focused on translation can lead to major technical breakthroughs.”

And the project continues.

“Now that we’ve got this unique platform, there are dozens of tests that we’re starting to do, including more aggressive control maneuvers and landing,” says Wood.

After that, the next steps will involve integrating the parallel work of many different research teams that are working on the brain, the colony coordination behavior, the power source, and so on, until the robotic insects are fully autonomous and wireless.

Read more . . .

via Harvard University – Caroline Perry
 

The Latest Streaming News: Robotic insects updated minute-by-minute

Bookmark this page and come back often
 

Latest NEWS

 

Latest VIDEO

 

The Latest from the BLOGOSPHERE

Harvard RoboBees Learn to Steer, Mostly

Harvard has been working on a robotic bee for five years now.

Five years is a long time in the fast-paced world of robotics, but when you’re trying to design a controllable flying robot that weighs less than one tenth of one gram from scratch, getting it to work properly is a process that often has to wait for technology to catch up to the concept.

The RoboBee has been able to take off under its own power for years, but roboticists have only just figured out how to get it to both take off and go where they want it to. Or at least, they’re getting very, very close, and the latest testing was presented at one of the opening sessions of IROS this morning.

With the addition two small control actuators underneath the wings, RoboBee has been endowed with the ability to pitch and roll, which is two thirds of what it needs to be able to do to be a fully controllable robotic insect. These maneuvers are currently open-loop, which means that the RoboBee isn’t getting any sensor feedback: it’s just been instructed to steer itself in one particular way, which it obediently does until it violently crashes into something.

As you can see, these are hardy little robocritters: the prototype RoboBees have gone through dozens of flights, “almost always with crash landings,” according to the researchers.

The reason that RoboBee hasn’t yet learned to yaw is that all three axes of motion (yaw, pitch, and roll) are coupled together such that it’s difficult to get a pure output with a pure input: if you try to get the robot to pitch, it’s going to yaw and roll a little bit too, and isolating yaw from pitch and roll proved to be particularly tricky. Ongoing research will develop a feedback controller that can compensate for this, which should (we hope) mean that a RoboBee capable of hovering and fully controllable flight will be buzzing our way sometime soon.

Read more  . . .

via IEEE Spectrum – Evan Ackerman
 

The Latest Streaming News: Microbotics updated minute-by-minute

Bookmark this page and come back often
 

Latest NEWS

 

Latest VIDEO

 

The Latest from the BLOGOSPHERE