Nanoparticles present sustainable way to grow food crops with less phosphorus

via Wikipedia

via Wikipedia

Scientists are working diligently to prepare for the expected increase in global population — and therefore an increased need for food production— in the coming decades. A team of engineers at Washington University in St. Louis has found a sustainable way to boost the growth of a protein-rich bean by improving the way it absorbs much-needed nutrients.

Ramesh Raliya, a research scientist, and Pratim Biswas, the Lucy & Stanley Lopata Professor and chair of the Department of Energy, Environmental & Chemical Engineering, both in the School of Engineering & Applied Science, discovered a way to reduce the use of fertilizer made from rock phosphorus and still see improvements in the growth of food crops by using zinc oxide nanoparticles.

The research was published April 7 in the Journal of Agricultural and Food Chemistry. Raliya said this is the first study to show how to mobilize native phosphorus in the soil using zinc oxide nanoparticles over the life cycle of the plant, from seed to harvest.

Food crops need phosphorus to grow, and farmers are using more and more phosphorus-based fertilizer as they increase crops to feed a growing world population. However, the plants can only use about 42 percent of the phosphorus applied to the soil, so the rest runs off into the water streams, where it grows algae that pollutes our water sources. In addition, nearly 82 percent of the world’s phosphorus is used as fertilizer, but it is a limited supply, Raliya says.

“If farmers use the same amount of phosphorus as they’re using now, the world’s supply will be depleted in about 80 years,” Raliya said. “Now is the time for the world to learn how to use phosphorus in a more sustainable manner.”

Raliya and his collaborators, including Jagadish Chandra Tarafdar at the Central Arid Zone Research Institute in Jodhpur, India, created zinc oxide nanoparticles from a fungus around the plant’s root that helps the plant mobilize and take up the nutrients in the soil. Zinc also is an essential nutrient for plants because it interacts with three enzymes that mobilize the complex form of phosphorus in the soil into a form that plants can absorb.

“Due to climate change, the daily temperature and rainfall amounts have changed,” Raliya said. “When they changed, the microflora in the soil are also changed, and once those are depleted, the soil phosphorus can’t mobilize the phosphorus, so the farmer applies more. Our goal is to increase the activity of the enzymes by several-fold, so we can mobilize the native phosphorus several-fold.”

When Raliya and the team applied the zinc nanoparticles to the leaves of the mung bean plant, it increased the uptake of the phosphorus by nearly 11 percent and the activity of the three enzymes by 84 percent to 108 percent. That leads to a lesser need to add phosphorus on the soil, Raliya said.

“When the enzyme activity increases, you don’t need to apply the external phosphorus, because it’s already in the soil, but not in an available form for the plant to uptake,” he said. “When we apply these nanoparticles, it mobilizes the complex form of phosphorus to an available form.”

The mung bean is a legume grown mainly in China, southeast Asia and India, where 60 percent of the population is vegetarian and relies on plant-based protein sources. The bean is adaptable to a variety of climate conditions and is very affordable for people to grow.

Raliya said 45 percent of the worldwide phosphorus use for agriculture takes place in India and China. Much of the phosphorus supply in developing countries is imported from the United States and Morocco-based rock phosphate mines.

“We hope that this method of using zinc oxide nanoparticles can be deployed in developing countries where farmers are using a lot of phosphorus,” Raliya said.

“These countries are dependent on the U.S. to export phosphorus to them, but in the future, the U.S. may have to help supply food, as well. If this crop can grow in a more sustainable manner, it will be helpful for everyone.”

“This is a broader effort under way at the nexus of food, energy and water,” Biswas said. “Nanoparticle technology enabled by aerosol science helps develop innovative solutions to address this global challenge problem that we face today.”

Learn more: Nanoparticles present sustainable way to grow food crops

 

 

The Latest on: Nanoparticles for food production

via  Bing News

 

Smart farming technique to boost yields and cut fertiliser pollution

Dr Shane Rothwell carrying out crop trials via Lancaster University

Dr Shane Rothwell carrying out crop trials
via Lancaster University

Researchers at Lancaster University are using X-rays to help farmers increase yields and cut water pollution following an unexpected discovery in a pea and bean crop.

Plant and Soil Scientists hope to combine two new technologies to provide a rapid “same day” measurement of soil phosphorus availability, enabling farmers and growers to make more informed decisions about fertiliser application.

The move to develop this technique came about following an unexpected discovery by Dr Shane Rothwell, as part of his PhD studies at Lancaster University.

Dr Rothwell noticed that, contrary to expectations,  pea and bean crop yields were sometimes decreased by up to 30 per cent when they were treated with recommended levels of lime – despite the fact that application of lime is expected to to improve the availability of plant nutrients.

He demonstrated that the reduced crop growth was associated with lower plant phosphorus content but existing ways of measuring the phosphorus in soil available for plant uptake were not picking up on the problem.

Consequently, developing a test to more accurately predict soil phosphorus availability following liming would benefit farmers and the environment, preventing waste and pollution.

Read more: Smart farming technique to boost yields and cut fertiliser pollution

 

The Latest on: Fertiliser pollution

via  Bing News

 

Systems crucial to stability of planet compromised

www.scienceworldreport.com

www.scienceworldreport.com

New data and assessments suggest that resilience of the planet is now at risk

Almost half of the processes that are crucial to maintaining the stability of the planet have become dangerously compromised by human activity. That is the view of an international team of 18 researchers who provide new evidence of significant changes in four of the nine systems which regulate the resilience of the Earth. One of the systems which has been seriously affected is the nitrogen-phosphorus cycle which is essential to all life, and is particularly important to both food production and the maintenance of clean water.

“People depend on food, and food production depends on clean water,” says Prof. Elena Bennett from McGill’s School of the Environment who contributed the research on the nitrogen-phosphorus cycle to the study. “This new data shows that our ability both to produce sufficient food in the future and to have clean water to drink and to swim in are at risk.”

The research fixing new planetary boundaries (which represent thresholds or tipping points beyond which there will be irreversible and abrupt environmental change) was published today in the journal Science. It suggests that changes to the Earth’s climate, biosphere integrity (a concept covering loss of biodiversity and species extinction), and land-system (through deforestation for example) represent a risk for current and future societies. The fourth process which has become significantly compromised is the nitrogen-phosphorus cycle, which affects both the water we drink and our ability to produce food.

There are two issues relating to the state of the phosphorus-nitrogen cycle. Both elements are essential to plant and animal life. But one of the problems is that phosphorus, which is used as a fertilizer for fields and lawns is in limited supply, and that supply is geopolitically concentrated. Nearly 90% of all known phosphorus reserves are found in just three countries – the vast majority is in Morocco, with China, Algeria coming in next.

The second issue is that the excess of phosphorus-based fertilisers that drain from fields and lawns into neighbouring lakes can have disastrous effects on the surrounding water. It can lead to the sudden growth of algae that can cause the decline or death of other lake organisms and produce toxins that are dangerous to people or animals that swim in the lake or get drinking water from it.

“About half a million residents of the city of Toledo found out that their tap water had been contaminated with a toxin called microcystin last summer. And in 2007 the Quebec government declared that more than 75 lakes were affected by toxins produced by blue-green algae, says Prof. Bennett. ”This kind of problem is likely to become much more common. We will see more lakes closed, will have to pay more to clean our water, and we will face temporary situations where our water is not cleanable or drinkable more and more frequently. That’s what it means to have crossed this planetary boundary. It’s not a good thing for any of us.”

Read more: Systems crucial to stability of planet compromised

 

The Latest on: Stability of planet compromised

via  Bing News

 

Recovering valuable substances from wastewater

Recovering valuable substances from wastewater

Hazardous substances, such as toxic heavy metals, can also be removed relatively easily with magnets

Phosphorus can be found in fertilizers, drinks and detergents. It accumulates in waterways and pollutes them. For this reason the German Phosphorus Platform has the goal to recover this valuable, but at the same time, harmful element from water. How this can be done will be shown by researchers at the Hannover Trade Fair / IndustrialGreenTec from April 7 – 11 in Hannover (hall 6, booth J18) where visitors can try out the method for themselves.

Not only plants, but also humans and animals need phosphorus, which is a building block of DNA. Many biological processes in our body can only take place if phosphorus atoms are also present. But farmers and industrial enterprises use so much of this element that soil is over-fertilized and waterways are contaminated.

This is where the experts of the German Phosphorus Platform DPP come in. As they have made it their aim to recover the phosphorus from the water, on the one hand in order to protect the environment and on the other to reutilize this valuable raw material so that no new phosphorus has to be taken from the deposit sites because phosphorus is getting more and more scarce. Although these sites still have enough phosphorus for the next 250 years, very few countries export this element so that if the geopolitical situation were to be become volatile, this would be bad news for supplies. Another problem is that in many mining areas the phosphorus deposits are contaminated with heavy metals.

Unfortunately industry is heavily reliant on phosphorus, not just the food and drinks industry, but also the building material and detergents industries as well as semiconductor and lighting manufacturers.

The German Phosphorus Platform was established in November 2013 and operates under the umbrella of the Fraunhofer Project Group Materials Recycling and Resource Strategies IWKS of the Fraunhofer Institute for Silicate Research ISC. “The German Phosphorus Platform is the network for phosphorus” explains Prof. Stefan Gaeth, Executive Manager of the DPP. “It attempts to bring together all the key players who use, recover and need phosphorus around one table”.

Trapping phosphorus with magnets

But how can phosphorus be recovered from water? Researchers at the IWKS have come up with an answer. “We add superparamagnetic particles to the water”, says Dr. Carsten Gellermann, head of business unit “Slags, sludges, landfill” at the IWKS. This means that if these particles detect a magnetic field they themselves become magnetic. However, if the magnet is removed the particles lose their magnetic property and float freely in the water without adhering to each other.

Researchers have attached bonding sites for phosphorus to these particles so that they fish the phosphate anions out of the water and carry them “piggyback”. Using a magnet the particles, along with their phosphorus load, can then be removed from the water, leaving the water clear of phosphorus. “This way other hazardous substances, such as toxic heavy metals, can also be removed relatively easily with magnets” explains Gellermann.

Read more . . .

 

The Latest on: Superparamagnetic particles

via  Bing News

 

Old concrete can protect nature

{8AB867E0-5CC1-4356-93A0-F25B3CFA876F}knust beton2

Lakes and streams are often receiving so much phosphorous that it could pose a threat to the local aquatic environment.

Now, research from the University of Southern Denmark shows that there is an easy and inexpensive way to prevent phosphorus from being discharged to aquatic environments. The solution is crushed concrete from demolition sites.

Usually we think of demolished concrete walls and floors as environmental contaminants, but in fact this material may turn out to be a valuable resource in nature protection work. This is the conclusion from researchers from University of Southern Denmark after studying the ability of crushed concrete to bind phosphorus.

“We have shown that crushed concrete can bind up to 90 per cent of phosphorus, “says PhD student and environmental engineer, Melanie Sønderup, Department of Biology at the University of Southern Denmark.

Contributors to the research are also postdoc, PhD, Sara Egemose and associate professor Mogens Flindt from the same place. Since March 2013 the researchers have tested the technique in a full-scale experiment, which will run until March 2014. But already now they find that the technique is very effective.

Large amounts of phosphorus can be washed out into lakes and streams when it rains. Rainwater that runs off from catchments, especially those fertilized with phosphorus, carries the phosphor with it. This phosphorus rich rainwater is then often collected in rainwater ponds, which discharges into lakes and streams.

“The water in these rainwater ponds can be very rich in phosphorus, and if it is discharged into a lake, it can lead to an increase in algae growth.  This can lead to oxygen depletion and a reduction in the number of species that can live in the water,” explains Melanie Sønderup and continues:

“By letting the pond water pass through a filter of crushed concrete, we can remove up to 90 per cent of the phosphorus”.

Phosphorus binds so well to the concrete because it contains cement. Cement is rich in calcium and also contains aluminum and iron. All three can bind phosphorus. Preliminary results show that the size of concrete grains is of importance. The smaller the grains the better they bind phosphorous. Fine concrete powder is thus more effective than millimeter sized concrete bits.

“It is also important that we do not use concrete that has been exposed to wind and rain for a long time, as this washes out the cement, which holds the essential calcium,” explains Melanie Sønderup.

As the experiments have only run for six months, the scientists do not yet know the durability of crushed concrete, but they believe that a filter of crushed concrete can last for a long time, probably several years.

Read more . . .

 

The Latest on: Phosphorus

via Google News and Bing News