Completely paralyzed man voluntarily moves his legs

VIDEO via UCLA

VIDEO via UCLA

Robotic step training and noninvasive spinal stimulation enable patient to take thousands of steps

A 39-year-old man who had been completely paralyzed for four years was able to voluntarily control his leg muscles and take thousands of steps in a “robotic exoskeleton” device during five days of training — and for two weeks afterward — a team of UCLA scientists reports this week.

This is the first time that a person with chronic, complete paralysis has regained enough voluntary control to actively work with a robotic device designed to enhance mobility.

In addition to the robotic device, the man was aided by a novel noninvasive spinal stimulation technique that does not require surgery. His leg movements also resulted in other health benefits, including improved cardiovascular function and muscle tone.

The new approach combines a battery-powered wearable bionic suit that enables people to move their legs in a step-like fashion, with a noninvasive procedure that the same researchers had previously used to enable five men who had been completely paralyzed to move their legs in a rhythmic motion. That earlier achievement is believed to be the first time people who are completely paralyzed have been able to relearn voluntary leg movements without surgery. (The researchers do not describe the achievement as “walking” because no one who is completely paralyzed has independently walked in the absence of the robotic device and electrical stimulation of the spinal cord.)

In the latest study, the researchers treated Mark Pollock, who lost his sight in 1998 and later became the first blind man to race to the South Pole. In 2010, Pollock fell from a second-story window and suffered a spinal cord injury that left him paralyzed from the waist down.

At UCLA, Pollock made substantial progress after receiving a few weeks of physical training without spinal stimulation and then just five days of spinal stimulation training in a one-week span, for about an hour a day.

“In the last few weeks of the trial, my heart rate hit 138 beats per minute,” Pollock said. “This is an aerobic training zone, a rate I haven’t even come close to since being paralyzed while walking in the robot alone, without these interventions. That was a very exciting, emotional moment for me, having spent my whole adult life before breaking my back as an athlete.”

Even in the years since he lost his sight, Pollock has competed in ultra-endurance races across deserts, mountains and the polar ice caps. He also won silver and bronze medals in rowing at the Commonwealth Games and launched a motivational speaking business.

“Stepping with the stimulation and having my heart rate increase, along with the awareness of my legs under me, was addictive. I wanted more,” he said.

Read more: Completely paralyzed man voluntarily moves his legs, UCLA scientists report

 

 

The Latest on: Robotic exoskeleton

via  Bing News

 

Paralyzed men move legs with new non-invasive spinal cord stimulation

This image shows the range of voluntary movement prior to receiving stimulation compared to movement after receiving stimulation, physical conditioning, and buspirone. The subject's legs are supported so that they can move without resistance from gravity. The electrodes on the legs are used for recording muscle activity. CREDIT Edgerton lab/UCLA

This image shows the range of voluntary movement prior to receiving stimulation compared to movement after receiving stimulation, physical conditioning, and buspirone. The subject’s legs are supported so that they can move without resistance from gravity. The electrodes on the legs are used for recording muscle activity.
CREDIT
Edgerton lab/UCLA

After training, men move legs independently, without stimulation

Five men with complete motor paralysis were able to voluntarily generate step-like movements thanks to a new strategy that non-invasively delivers electrical stimulation to their spinal cords, according to a new study funded in part by the National Institutes of Health. The strategy, called transcutaneous stimulation, delivers electrical current to the spinal cord by way of electrodes strategically placed on the skin of the lower back. This expands to nine the number of completely paralyzed individuals who have achieved voluntary movement while receiving spinal stimulation, though this is the first time the stimulation was delivered non-invasively. Previously it was delivered via an electrical stimulation device surgically implanted on the spinal cord.

In the study, the men’s movements occurred while their legs were suspended in braces that hung from the ceiling, allowing them to move freely without resistance from gravity. Movement in this environment is not comparable to walking; nevertheless, the results signal significant progress towards the eventual goal of developing a therapy for a wide range of individuals with spinal cord injury.

“These encouraging results provide continued evidence that spinal cord injury may no longer mean a life-long sentence of paralysis and support the need for more research,” said Roderic Pettigrew, Ph.D., M.D., director of the National Institute of Biomedical Imaging and Bioengineering at NIH. “The potential to offer a life-changing therapy to patients without requiring surgery would be a major advance; it could greatly expand the number of individuals who might benefit from spinal stimulation. It’s a wonderful example of the power that comes from combining advances in basic biological research with technological innovation.”

The study was conducted by a team of researchers at the University of California, Los Angeles; University of California, San Francisco; and the Pavlov Institute, St. Petersburg, Russia. The team was led by V. Reggie Edgerton, Ph.D., a distinguished professor of integrative biology and physiology at UCLA and Yury Gerasimenko, Ph.D., director of the laboratory of movement physiology at Pavlov Institute and a researcher in UCLA’s Department of Integrative Biology and Physiology. They reported their results in the Journal of Neurotrauma.

In a study published a little over a year ago, Edgerton–along with Susan Harkema, Ph.D., and Claudia Angeli, Ph.D., from the University of Louisville, Kentucky–reported that four men with complete motor paralysis were able to generate some voluntary movements while receiving electrical stimulation to their spinal cords. The stimulation came from a device called an epidural stimulator that was surgically implanted on the surface of the men’s spinal cords. On the heels of that success, Edgerton and colleagues began developing a strategy for delivering stimulation to the spinal cord non-invasively, believing it could greatly expand the number of paralyzed individuals who could potentially benefit from spinal stimulation.

“There are a lot of individuals with spinal cord injury that have already gone through many surgeries and some of them might not be up to or capable of going through another,” said Edgerton. “The other potentially high impact is that this intervention could be close to one-tenth the cost of an implanted stimulator.”

During this most recent study, five men–each paralyzed for more than two years–underwent a series of 45 minute sessions, once a week, for approximately 18 weeks, to determine the effects of non-invasive electrical stimulation on their ability to move their legs.

In addition to stimulation, the men received several minutes of conditioning each session, during which their legs were moved manually for them in a step-like pattern. The goal of the conditioning was to assess whether physical training combined with electrical stimulation could enhance efforts to move voluntarily.

For the final four weeks of the study, the men were given the pharmacological drug buspirone, which mimics the action of serotonin and has been shown to induce locomotion in mice with spinal cord injuries. While receiving the stimulation, the men were instructed at different points to either try to move their legs or to remain passive.

At the initiation of the study, the men’s legs only moved when the stimulation was strong enough to generate involuntary step-like movements. However, when the men attempted to move their legs further while receiving stimulation, their range of movement significantly increased. After just four weeks of receiving stimulation and physical training, the men were able to double their range of motion when voluntarily moving their legs while receiving stimulation. The researchers suggest that this change was due to the ability of electrical stimulation to reawaken dormant connections that may exist between the brain and the spinal cord of patients with complete motor paralysis.

Surprisingly, by the end of the study, and following the addition of buspirone, the men were able to move their legs with no stimulation at all and their range of movement was–on average–the same as when they were moving while receiving stimulation.

“It’s as if we’ve reawakened some networks so that once the individuals learned how to use those networks, they become less dependent and even independent of the stimulation,” said Edgerton.

Read more: Paralyzed men move legs with new non-invasive spinal cord stimulation

 

The Latest on: Non-invasive spinal cord stimulation

via Google News

 

The Latest on: Non-invasive spinal cord stimulation

via  Bing News

 

Light-activated neurons from stem cells restore function to paralysed muscles

via UCL

A new way to artificially control muscles using light, with the potential to restore function to muscles paralysed by conditions such as motor neuron disease and spinal cord injury, has been developed by scientists at UCL and King’s College London.

The technique involves transplanting specially-designed motor neurons created from stem cells into injured nerve branches. These motor neurons are designed to react to pulses of blue light, allowing scientists to fine-tune muscle control by adjusting the intensity, duration and frequency of the light pulses.

In the study, published this week in Science, the team demonstrated the method in mice in which the nerves that supply muscles in the hind legs were injured. They showed that the transplanted stem cell-derived motor neurons grew along the injured nerves to connect successfully with the paralyzed muscles, which could then be controlled by pulses of blue light.

“Following the new procedure, we saw previously paralysed leg muscles start to function,” says Professor Linda Greensmith of the MRC Centre for Neuromuscular Diseases at UCL’s Institute of Neurology, who co-led the study. “This strategy has significant advantages over existing techniques that use electricity to stimulate nerves, which can be painful and often results in rapid muscle fatigue. Moreover, if the existing motor neurons are lost due to injury or disease, electrical stimulation of nerves is rendered useless as these too are lost.”

Muscles are normally controlled by motor neurons, specialized nerve cells within the brain and spinal cord. These neurons relay signals from the brain to muscles to bring about motor functions such as walking, standing and even breathing. However, motor neurons can become damaged in motor neuron disease or following spinal cord injuries, causing permanent loss of muscle function resulting in paralysis

“This new technique represents a means to restore the function of specific muscles following paralysing neurological injuries or disease,” explains Professor Greensmith. “Within the next five years or so, we hope to undertake the steps that are necessary to take this ground-breaking approach into human trials, potentially to develop treatments for patients with motor neuron disease, many of whom eventually lose the ability to breathe, as their diaphragm muscles gradually become paralysed. We eventually hope to use our method to create a sort of optical pacemaker for the diaphragm to keep these patients breathing.”

Read more . . .

 

The Latest on: Restore function to paralysed muscles

via  Bing News

 

Bionic suit to help Guthrie woman walk

Device offers new hope to local wheelchair users

Twenty-two-year-old Mary Beth Davis of Guthrie was injured in a car accident on her way home from school in Stillwater in 2010. She was left paralyzed from the chest down. Like many millions of people with spinal cord injuries before her, the wheelchair was the only mobility option she could ever hope to have — until now.

This August, Integris Jim Thorpe Rehabilitation will become one of the first 14 facilities in the world to offer the Ekso™ bionic suit to Mary Beth and other patients with lower-extremity paralysis or weakness, enabling them to stand and walk again. Developed by Ekso Bionics, the wearable robot was recently named a Top Ten invention by CNN and Wired and one of the Best Inventions by TIME.

Sarah Anderson, 31, who was paralyzed from the waist down after being struck by a drunk driver, demonstrated Ekso for Jim Thorpe Rehabilitation physical therapists and patients.

As she watched Sarah strap Ekso over her clothing and walk, Davis was astonished by the technology and hopeful for the future.

“Getting to see the suit in person and witnessing someone like me stand and then walk, is a surreal moment,” Davis said. “Knowing that I will get the opportunity to train on the device makes it that much more exciting.”

The goal of Jim Thorpe is to offer patients the most advanced and effective technology available anywhere in the world, said Dr. Al Moorad, medical director of Jim Thorpe Rehabilitation.

“We will use the Ekso bionic suit for both inpatient and outpatient therapy,” Moorad said. “Our primary mission is to help our patients recover from their disabilities and return to living their lives to the fullest.”

With the patient providing the balance and proper body positioning, Ekso allows them to walk over ground with reciprocal gait. The physical therapist uses the control pad to program the desired walking parameters, such as step length and speed, as well as control when Ekso stands, sits and takes a step. The therapist has the ability to modify Ekso’s walking progression as the patient improves, and allow the patient to initiate the steps independently when they are able to balance comfortably.

Read more . . .

via Edmondsun
 

The Latest Streaming News: Bionic suit updated minute-by-minute

Bookmark this page and come back often
 

Latest NEWS

 

Latest VIDEO

 

The Latest from the BLOGOSPHERE

A mind to walk again

A trial of thought-controlled robotic legs is taking its first steps

 

ANYONE who saw Claire Lomas complete this year’s London marathon on May 7th cannot fail to have been impressed by her grit and determination. Ms Lomas, once a show jumper, was paralysed from the chest down by a riding accident in 2007, so finishing a marathon, albeit at walking pace, was a dramatic feat. Some of the adulation, however, should be reserved for the technology that helped her do so: a pair of bionic legs.

Ms Lomas’s legs were designed by Amit Goffer, an Israeli engineer who is himself paralysed. They have various modes (“sit”, “stand” and “walk”, and “ascend” and “descend” for staircases) and are controlled by a keypad worn on the wrist. Walking also requires the assistance of a pair of crutches. But Dr Goffer’s legs allowed Ms Lomas to travel the 42.195km (26 miles and 385 yards) of the marathon course in stages, over a period of 16 days.

That record may not last long, however. Another engineer, José Contreras-Vidal of the University of Houston, in Texas, has what may prove an even better design: a pair of bionic legs that respond directly to signals from the brain. (An early version is pictured above.)

The idea of controlling machines by thought is not new. Research both on people and on monkeys has shown it is possible for them to move mechanical limbs with great precision, using software which interprets signals collected by electrodes implanted in their brains. (The latest such experiment, allowing quadriplegic people to control robotic arms and hands, is described in this article.) The problem with this approach is that implanting electrodes into a brain is a dangerous procedure—and, even if it succeeds and does no damage, the wires leading out of the skull to the computer open a passage into the body which can lead to infection.

John 5:8

Dr Contreras-Vidal’s approach gets round these difficulties by employing electroencephalography (EEG), which measures those electrical signals from the brain that reach the scalp.

Read more . . .

via The Economist

The Latest News: Robotic Legs updated minute-by-minute