Balance Recovery Technology Based on Human Reflexes May Keep Prosthetic Legs and Robots from Tripping

via Carnegie Mellow University

via Carnegie Mellow University

Lower-leg Amputees Will Test Carnegie Mellon’s Balance Recovery Technology

Trips and stumbles too often lead to falls for amputees using leg prosthetics, but a robotic leg prosthesis being developed at Carnegie Mellon University promises to help users recover their balance by using techniques based on the way human legs are controlled.

Hartmut Geyer, assistant professor of robotics, said a control strategy devised by studying human reflexes and other neuromuscular control systems has shown promise in simulation and in laboratory testing, producing stable walking gaits over uneven terrain and better recovery from trips and shoves.

Over the next three years, as part of a $900,000 National Robotics Initiative study funded through the National Science Foundation, this technology will be further developed and tested using volunteers with above-the-knee amputations.

Joining Geyer on the research team are Steve Collins, associate professor of mechanical engineering and robotics, and Santiago Munoz, a certified prosthetist orthotist and instructor in the Department of Rehabilitation Science and Technology at the University of Pittsburgh.

“Powered prostheses can help compensate for missing leg muscles, but if amputees are afraid of falling down, they won’t use them,” Geyer said. “Today’s prosthetics try to mimic natural leg motion, yet they can’t respond like a healthy human leg would to trips, stumbles and pushes. Our work is motivated by the idea that if we understand how humans control their limbs, we can use those principles to control robotic limbs.”

“Our work is motivated by the idea that if we understand how humans control their limbs, we can use those principles to control robotic limbs.” — Hartmut Geyer

Those principles might aid not only leg prostheses, but also legged robots. Geyer’s latest findings applying the neuromuscular control scheme to prosthetic legs and, in simulation, to full-size walking robots, were presented recently at the IEEE International Conference on Intelligent Robots and Systems in Hamburg, Germany. An upcoming paper in IEEE Transactions in Biomedical Engineering focuses specifically on how this control scheme can improve balance recovery.

Geyer has studied the dynamics of legged walking and motor control for the past decade. Among his observations is the role of the leg extensor muscles, which generally work to straighten joints. He says the force feedback from these muscles automatically responds to ground disturbances, quickly slowing leg movement or extending the leg further, as necessary.

Geyer’s team has evaluated the neuromuscular model by using computer simulations and a cable-driven device about half the size of a human leg, called the Robotic Neuromuscular Leg 2. The leg test bed was funded by theEunice Kennedy Shriver National Institute of Child Health & Human Development.

The researchers found that the neuromuscular control method can reproduce normal walking patterns and that it effectively responds to disturbances as the leg begins to swing forward as well as late in the swing. More work will be necessary, he noted, because the control scheme doesn’t yet respond effectively to disturbances at mid-swing.

Powered prosthetics have motors that can adjust the angle of the knee and ankle during walking, allowing a more natural gait. These motors also generate force to compensate for missing muscles, making it less physically tasking for an amputee to walk and enabling them to move as fast as an able-bodied person.

Read more: STRATEGY BASED ON HUMAN REFLEXES MAY KEEP LEGGED ROBOTS, PROSTHETIC LEGS FROM TRIPPING

 

The Latest on: Balance Recovery Technology

via  Bing News

 

Spring-mass technology heralds the future of walking robots

via OSU

via OSU

A study by engineers at Oregon State University suggests that they have achieved the most realistic robotic implementation of human walking dynamics that has ever been done, which may ultimately allow human-like versatility and performance.

The system is based on a concept called “spring-mass” walking that was theorized less than a decade ago, and combines passive dynamics of a mechanical system with computer control. It provides the ability to blindly react to rough terrain, maintain balance, retain an efficiency of motion and essentially walk like humans do.

As such, this approach to robots that can walk and run like humans opens the door to entire new industries, jobs and mechanized systems that do not today exist.

The findings on spring-mass walking have been reported for the first time in IEEE Transactions on Robotics, by engineers from OSU and Germany. The work has been supported by the National Science Foundation, the Defense Advanced Research Projects Agency and the Human Frontier Science Program.

The technologies developed at OSU have evolved from intense studies of both human and animal walking and running, to learn how animals achieve a fluidity of motion with a high degree of energy efficiency. Animals combine a sensory input from nerves, vision, muscles and tendons to create locomotion that researchers have now translated into a working robotic system.

The system is also efficient. Studies done with their ATRIAS robot model, which incorporates the spring-mass theory, showed that it’s three times more energy-efficient than any other human-sized bipedal robots.

“I’m confident that this is the future of legged robotic locomotion,” said Jonathan Hurst, an OSU professor of mechanical engineering and director of the Dynamic Robotics Laboratory in the OSU College of Engineering.

“We’ve basically demonstrated the fundamental science of how humans walk,” he said.

“Other robotic approaches may have legs and motion, but don’t really capture the underlying physics,” he said. “We’re convinced this is the approach on which the most successful legged robots will work. It retains the substance and science of legged animal locomotion, and animals demonstrate performance that far exceeds any other approach we’ve seen. This is the way to go.”

The current technology, Hurst said, is still a crude illustration of what the future may hold. When further refined and perfected, walking and running robots may work in the armed forces. As fire fighters they may charge upstairs in burning buildings to save lives. They could play new roles in factories or do ordinary household chores.

Aspects of the locomotion technology may also assist people with disabilities, the researchers said.

“Robots are already used for gait training, and we see the first commercial exoskeletons on the market,” said Daniel Renjewski, the lead author on the study with the Technische Universitat Munchen. “However, only now do we have an idea how human-like walking works in a robot. This enables us to build an entirely new class of wearable robots and prostheses that could allow the user to regain a natural walking gait.”

There are few limits to this technology, the researchers said.

Read more: Spring-mass” technology heralds the future of walking robots

 

 

The Latest on: Walking Robots

via  Bing News

 

Soft robot changes color as it grips and walks

via ACS.org

via ACS.org

Soft robots can bend, walk and grip. And, unlike their rigid counterparts, some can get flattened and bounce back into shape. Now scientists report a new advance in the journal ACS Applied Materials & Interfaces: a way to make elastic material for soft robots that changes color when it stretches. They say this process opens the door to robot camouflage, new ways to deliver medicines and other applications.

Most commercial robots are stiff, made of hard plastics and metal parts. But the supple robots under development could bridge the gap between today’s inflexible varieties and the more fluid and forgiving movements of animals and humans. These machines work when operators pump them with gases or liquids. This inflation results in specific shape changes and desired movements. To impart more versatility to the devices, Stephen L. Craig and colleagues wanted to take advantage of the molecular changes that occur when a robot curls or twists.

The researchers incorporated color-changing compounds in their robots’ material that are activated when stretched. This feature could help a robot camouflage itself when it moves. And, because the color change is most intense where the strain on the material is highest, it also can indicate where it’s vulnerable to breaking. The researchers note that other compounds could also be added to release drug molecules, make a robot glow or repair the material when it ruptures.

via American Chemical Society

 

 

The Latest on: Soft robots

via  Bing News

 

Malaria vaccine provides hope for a general cure for cancer

via University of Copenhagen

via University of Copenhagen

CANCER

The hunt for a vaccine against malaria in pregnant women has provided an unexpected side benefit for Danish researchers, namely what appears to be an effective weapon against cancer. The scientists behind the vaccine aim for tests on humans within four years.

Danish scientists from the University of Copenhagen and the University of British Columbia (UBC) face a possible breakthrough in the fight against cancer, which may result in a genuine medical treatment for the dreaded disease.

The hunt for a weapon to fight malaria in pregnant women has revealed that, expressed in popular terms, armed malaria proteins can kill cancer. The researchers behind the discovery hope to be able to conduct tests on humans within four years.

In collaboration with cancer researcher Mads Daugaard from the University of British Columbia in Canada, malaria researcher Professor Ali Salanti from the Faculty of Medical Health and Sciences, UCPH, has revealed that the carbohydrate that the malaria parasite attaches itself to in the placenta in pregnant women is identical to a carbohydrate found in cancer cells.

In the laboratory, scientists have created the protein that the malaria parasite uses to adhere to the placenta and added a toxin. This combination of malaria protein and toxin seeks out the cancer cells, is absorbed, the toxin released inside, and then the cancer cells die. This process has been witnessed in cell cultures and in mice with cancer. The discovery has only just been described in an article in the renowned scientific journal Cancer Cell.

“For decades, scientists have been searching for similarities between the growth of a placenta and a tumor. The placenta is an organ, which within a few months grows from only few cells into an organ weighing approx. two pounds, and it provides the embryo with oxygen and nourishment in a relatively foreign environment. In a manner of speaking, tumors do much the same, they grow aggressively in a relatively foreign environment,” says Ali Salanti from the Department of Immunology and Microbiology at the University of Copenhagen.

Ali Salanti’s team is currently testing a vaccine against malaria on humans, and it was in connection with the development of this drug that he discovered that the carbohydrate in the placenta was also present in cancer tumors. Ali Salanti immediately contacted his former fellow student and now cancer researcher, Mads Daugaard, who is head of the Laboratory of Molecular Pathology at the Vancouver Prostate Center at UBC in Canada. In collaboration, the two groups have generated results, which they hope will provide the basis for a drug against cancer.

“We examined the carbohydrate’s function. In the placenta, it helps ensure fast growth. Our experiments showed that it was the same in cancer tumors. We combined the malaria parasite with cancer cells and the parasite reacted to the cancer cells as if they were a placenta and attached itself,” Ali Salanti explains.

Read more: Malaria vaccine provides hope for a general cure for cancer

 

 

The Latest on: Cure for cancer

via  Bing News

 

This Robot Mimics Your Movements to Transport You to Another Place

via PSFK.com

via PSFK.com

DORA—the Dextrous Observational Roving Automaton—is a new kind of robot. Its job isn’t to replace humans by performing tasks more efficiently. Instead, it interacts with human users and serves as a “personal avatar,” allowing individuals to experience new places without ever needing to leave their homes.

Part virtual reality, part “teleoperated robotics,” DORA provides users with an immersive experience by using technology that is able to track and mimic the movements of a human head. A head-mounted display also provides a video and audio stream to the user in real time.

According to its designers, DORA is built for navigating and exploring remote locations—but it’s easy to see, for example, how the robot could also be used in a corporate office setting. Imagine being miles away from a big meeting or presentation but still being able to get a comprehensive view that wouldn’t be possible using basic videoconferencing technology. That’s the capability DORA wants its users to have.

Read more: This Robot Mimics Your Movements to Transport You to Another Place

 

 

The Latest on: Observational Roving Automaton

via  Bing News