Cornell scientists convert carbon dioxide to useful products and create electricity

via Cornell University

via Cornell University

While the human race will always leave its carbon footprint on the Earth, it must continue to find ways to lessen the impact of its fossil fuel consumption.

“Carbon capture” technologies – chemically trapping carbon dioxide before it is released into the atmosphere – is one approach. In a recent study, Cornell University researchers disclose a novel method for capturing the greenhouse gas and converting it to a useful product – while producing electrical energy.

Lynden Archer, the James A. Friend Family Distinguished Professor of Engineering, and doctoral student Wajdi Al Sadat have developed an oxygen-assisted aluminum/carbon dioxide power cell that uses electrochemical reactions to both sequester the carbon dioxide and produce electricity.

Their paper, “The O2-assisted Al/CO2 electrochemical cell: A system for CO2capture/conversion and electric power generation,” was published July 20 in Science Advances.

The group’s proposed cell would use aluminum as the anode and mixed streams of carbon dioxide and oxygen as the active ingredients of the cathode. The electrochemical reactions between the anode and the cathode would sequester the carbon dioxide into carbon-rich compounds while also producing electricity and a valuable oxalate as a byproduct.

In most current carbon-capture models, the carbon is captured in fluids or solids, which are then heated or depressurized to release the carbon dioxide. The concentrated gas must then be compressed and transported to industries able to reuse it, or sequestered underground. The findings in the study represent a possible paradigm shift, Archer said.

“The fact that we’ve designed a carbon capture technology that also generates electricity is, in and of itself, important,” he said. “One of the roadblocks to adopting current carbon dioxide capture technology in electric power plants is that the regeneration of the fluids used for capturing carbon dioxide utilize as much as 25 percent of the energy output of the plant. This seriously limits commercial viability of such technology. Additionally, the captured carbon dioxide must be transported to sites where it can be sequestered or reused, which requires new infrastructure.”

The group reported that their electrochemical cell generated 13 ampere hours per gram of porous carbon (as the cathode) at a discharge potential of around 1.4 volts. The energy produced by the cell is comparable to that produced by the highest energy-density battery systems.

Another key aspect of their findings, Archer says, is in the generation of superoxide intermediates, which are formed when the dioxide is reduced at the cathode. The superoxide reacts with the normally inert carbon dioxide, forming a carbon-carbon oxalate that is widely used in many industries, including pharmaceutical, fiber and metal smelting.

“A process able to convert carbon dioxide into a more reactive molecule such as an oxalate that contains two carbons opens up a cascade of reaction processes that can be used to synthesize a variety of products,” Archer said, noting that the configuration of the electrochemical cell will be dependent on the product one chooses to make from the oxalate.

Al Sadat, who worked on onboard carbon capture vehicles at Saudi Aramco, said this technology in not limited to power-plant applications. “It fits really well with onboard capture in vehicles,” he said, “especially if you think of an internal combustion engine and an auxiliary system that relies on electrical power.”

He said aluminum is the perfect anode for this cell, as it is plentiful, safer than other high-energy density metals and lower in cost than other potential materials (lithium, sodium) while having comparable energy density to lithium. He added that many aluminum plants are already incorporating some sort of power-generation facility into their operations, so this technology could assist in both power generation and reducing carbon emissions.

A current drawback of this technology is that the electrolyte – the liquid connecting the anode to the cathode – is extremely sensitive to water. Ongoing work is addressing the performance of electrochemical systems and the use of electrolytes that are less water-sensitive.

Learn more: Cornell scientists convert carbon dioxide, create electricity



The Latest on: Electrochemical cell

via Google News


The Latest on: Electrochemical cell

via  Bing News


Team develops new storage cell for solar energy storage AND nighttime conversion

Dong Liu (left), Zi Wei (center) and Fuqiang Liu, an assistant professor in the UT Arlington Materials Science and Engineering Department.

Dong Liu (left), Zi Wei (center) and Fuqiang Liu, an assistant professor in the UT Arlington Materials Science and Engineering Department.

A University of Texas at Arlington materials science and engineering team has developed a new energy cell that can store large-scale solar energy even when it’s dark.

The innovation is an advancement over the most common solar energy systems that rely on using sunlight immediately as a power source. Those systems are hindered by not being able to use that solar energy at night or when cloudy conditions exist.

The UT Arlington team developed an all-vanadium photo-electrochemical flow cell that allows for efficient and large-scale solar energy storage even at nighttime. The team is now working on a larger prototype. “This research has a chance to rewrite how we store and use solar power,” said Fuqiang Liu, an assistant professor in the Materials Science and Engineering Department who led the research team. “As renewable energy becomes more prevalent, the ability to store solar energy and use it as a renewable alternative provides a sustainable solution to the problem of energy shortage. It also can effectively harness the inexhaustible energy from the sun.”

The work is a product of the 2013 National Science Foundation $400,000 Faculty Early Career Development grant awarded to Liu to improve the way solar energy is captured, stored and transmitted for use. Other members of the team included lead author Dong Liu, who recently defended his UT Arlington Ph.D. dissertation in 2015, and Zi Wei, a UT Arlington doctoral candidate. The research is detailed in “Reversible Electron Storage in an All-Vanadium Photoelectrochemical Storage Cell: Synergy between Vanadium Redox and Hybrid Photocatalyst,” in the most recent edition of the American Chemical Society journal ACS Catalysis.

Khosrow Behbehani, dean of the College of Engineering, said the groundbreaking research has the potential to positively impact on the way we generate and consume energy. “Dr. Liu and his colleagues are working to help us shape a more sustainable future and are taking innovative steps to improve our ability to harness and use one of the larger sources of energy available to us – the sun,” Behbehani said.

Dong Liu, lead author of the paper, said a major drawback of current solar technology is the limitation on storing energy under dark conditions. “We have demonstrated simultaneously reversible storage of both solar energy and electrons in the cell,” Dong Liu said.

“Release of the stored electrons under dark conditions continues solar energy storage, thus allowing for unintermittent storage around the clock.”

Read more: UT Arlington team develops new storage cell for solar energy storage, nighttime conversion


The Latest on: Photoelectrochemical cell

via Google News


The Latest on: Photoelectrochemical cell

via  Bing News


Super Material Will Make Lighting Cheaper and Fully Recyclable

International Recycling Symbol {{validSVG}}
Image via Wikipedia

With the use of the new super material graphene, Swedish and American researchers have succeeded in producing a new type of lighting component. It is inexpensive to produce and can be fully recycled.

The invention, which paves the way for glowing wallpaper made entirely of plastic, for example, is published in the scientific journal ACS Nano by scientists at Linköping University and Umeå University, in Sweden, and Rutgers, The State University of New Jersey.

Ultra-thin and electricity-saving organic light diodes, so-called OLEDs, have recently been introduced commercially in mobile phones, cameras, and super-thin TVs. An OLED consists of a light-generating layer of plastic placed between two electrodes, one of which must be transparent. Today’s OLEDs have two drawbacks — they are relatively expensive to produce, and the transparent electrode consists of the metal alloy indium tin oxide. The latter presents a problem because indium is both rare and expensive and moreover is complicated to recycle. Now researchers at Linköping and Umeå universities, working with American colleagues, are presenting an alternative to OLEDs, an organic light-emitting electrochemical cell (LEC). It is inexpensive to produce, and the transparent electrode is made of the carbon material graphene.

“This is a major step forward in the development of organic lighting components, from both a technological and an environmental perspective. Organic electronics components promise to become extremely common in exciting new applications in the future, but this can create major recycling problems. By using graphene instead of conventional metal electrodes, components of the future will be much easier to recycle and thereby environmentally attractive,” says one of the scientists, Nathaniel Robinson from Linköping University.

Read more . . .

Reblog this post [with Zemanta]

Reverse Combustion: Can CO2 Be Turned Back into Fuel?

Global annual fossil fuel carbon dioxide emiss...
Image via Wikipedia

Various efforts are underway to find a cheap, efficient and scalable way to recycle the greenhouse gas carbon dioxide back into the hydrocarbons that fuel civilization

In the 1990s a graduate student named Lin Chao at Princeton University decided to bubble carbon dioxide into an electrochemical cell. Using cathodes made from the element palladium and a catalyst known as pyridinium—a garden variety organic chemical that is a by-product of oil refining—he discovered that applying an electric current would assemble methanol from the CO2. He published his findings in 1994—and no one cared.

But by 2003, Chao’s successor in the Princeton lab of chemist Andrew Bocarsly was deeply interested in finding a solution to the growing problem of the CO2 pollution causing global climate change. Graduate student Emily Barton picked up where he left off and, using an electrochemical cell that employs a semiconducting material used in photovoltaic solar cells for one of its electrodes, succeeded in tapping sunlight to transform CO2 into the basic fuel.

“The dominant thinking 10 years ago was that we should bury the CO2. But if you could efficiently convert it into something that we wouldn’t have to spend all that money and energy to put into the ground, sort of recycle it, that would be better,” Bocarsly says. “We take CO2, water, sunlight and an appropriate catalyst and generate an alcoholic fuel.”

He adds: “We didn’t have some brilliant insight here. We had some luck.” Luck that venture capitalists are now trying to turn into cash flow via a start-up known asLiquid Light.

Turning CO2 into fuels is exactly what photosynthetic organisms have been doing for billions of years, although their fuels tend to be foods, like sugars. Now humans are trying to store the energy in sunlight by making a liquid fuel from CO2 and hydrogen—a prospect that could recycle CO2 emissions and slow down the rapid buildup of such greenhouse gases in the atmosphere. “You take electricity and combine CO2 with hydrogen to make gasoline,” explained Arun Majumdar, director of the Advanced Research Projects Agency–Energy (ARPA–e) that is pursuing such technology, at a conference in March. “This is like killing four birds with one stone”—namely, energysecurity, climate change, the federal deficit and, potentially, unemployment.

Read more . . .

The Latest Streaming News: CO2 Fuel updated minute-by-minute