A squidlike robot that’s fast, quiet and hard to see

Xiaobo Bi and Qiang Zhu discuss their work developing an aquatic robot inspired by cephalopods. (Left) Envisioned squid-inspired robot that combines fin flapping and jetting for locomotion. (Right) Numerical simulations provide insights of the underlying physical mechanisms. CREDIT Qiang Zhu

Scientists studied fluid mechanics to simulate and build a squidlike robot that’s fast, quiet and hard to see.

Inspired by the unique and efficient swimming strategy of cephalopods, scientists developed an aquatic robot that mimics their form of propulsion.

These high-speed, squidlike robots are made of smart materials, which make them hard to detect — an advantage that has potential military reconnaissance and scientific applications — while maintaining a low environmental footprint.

Physicists Xiaobo Bi and Qiang Zhu used numerical simulations to illustrate the physical mechanisms and fluid mechanics of a squid’s swimming method, which uses intermittent bursts through pulsed jet propulsion. By using this form of locomotion, the new device can achieve impressive speeds, just like its animal inspiration. Bi and Zhu discuss their work in this week’s Physics of Fluids, from AIP Publishing.

When swimming, these squidlike machines suck water into a pressure chamber and then eject it. The soft-bodied device could be used as a platform for environmental monitoring by simultaneously using this feature to test water samples as it swims.

“In addition to the 2D and 3D numerical simulations presented in this article, we are working with an interdisciplinary team to build a prototype of the mechanical device, to perform both straight-line swimming and maneuvers,” Zhu said. “This project will combine fluid dynamics, control, smart materials and robotic design.”

The device could be used as either a stand-alone swimmer or as a propeller of an underwater vehicle.

The researchers have not yet been able to maintain speeds that can last for more than a few cycles due to turbulence and instabilities, but they are working on ways to overcome this. Zhu hopes this research will provide a starting point for more sophisticated modeling and experimental studies to develop robots like their creation.

Learn more: Squid-inspired robots might have environmental, propulsion applications

 

The Latest on: Aquatic robot

via Google News

 

The Latest on: Aquatic robot

via  Bing News

 

The first robotic fish proven to mimic the speed and movements of live yellowfin tuna

Mechanical engineers at the University of Virginia School of Engineering, leading a collaboration with biologists from Harvard University, have created the first robotic fish proven to mimic the speed and movements of live yellowfin tuna.

With a better understanding of how fish move, researchers eventually could develop faster, more efficient propulsion systems for manned and unmanned underwater vehicles.

Mechanical engineers at the University of Virginia School of Engineering, leading a collaboration with biologists from Harvard University, have created the first robotic fish proven to mimic the speed and movements of live yellowfin tuna.

Their PEER-REVIEWED PAPER, “Tuna robotics: a high-frequency experimental platform exploring the performance space of swimming fishes,” was published Sept. 18, 2019, in Science Robotics, an offshoot of SCIENCE magazine devoted to technological advancements in robotic science and engineering.

Led by HILARY BART-SMITH, professor in UVA Engineering’s DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING, the robotic tuna project was born out of a five-year, $7.2 million Multi-disciplinary University Research Initiative  the U.S. Office of Naval Research awarded Bart-Smith to study fast, efficient swimming of different fishes. The aim of Bart-Smith’s project is to better understand the physics of fish propulsion, research that could eventually inform development of the next generation of underwater vehicles, driven by fish-like systems better than propellers.

Underwater robots also are useful in a range of applications, such as defense, marine resources exploration, infrastructure inspection and recreation.

Well before bio-inspired propulsion systems can become viable for public and commercial use in manned and unmanned vehicles, however, researchers must be able to reliably understand how fish and other creatures move through water.

“Our goal wasn’t just to build a robot. We really wanted to understand the science of biological swimming,” Bart-Smith said. “Our aim was to build something that we could test hypotheses on in terms of what makes biological swimmers so fast and efficient.”

The team first needed to study the biological mechanics of high-performance swimmers. Harvard biology professor George V. Lauder and his team of researchers precisely measured the swimming dynamics of yellowfin tuna and mackerel. Using that data, Bart-Smith and her team, research scientist Jianzhong “Joe” Zhu and Ph.D. student Carl White, constructed a robot that not only moved like a fish underwater but beat its tail fast enough to reach nearly equivalent speeds.

They then compared the robot they named “Tunabot” with live specimens.

“There are lot of papers on fish robots, but most of them don’t have much biological data in them. So I think this paper is unique in the quality of both the robotic work and the biological data married together into one paper,” Lauder said.

“What is so fantastic with the results we are presenting in the paper are the similarities between biology and the robotic platform, not just in terms of the swimming kinematics, but also in terms of the relationship between speed and tail-beat frequency and energy performance,” Bart-Smith said. “These comparisons give us confidence in our platform and its ability to help us understand more about the physics of biological swimming.”

The team’s work builds on UVA Engineering’s strengths in autonomous systems. The Department of Mechanical and Aerospace Engineering is a participant in UVA Engineering’s Link Lab for cyber-physical systems, which focuses on smart cities, smart health and autonomous systems, including autonomous vehicles.

The Tunabot project is an outgrowth of Bart-Smith’s second, highly competitive Multi-disciplinary University Research Initiative from the Office of Naval Research; in 2008, Bart-Smith received a $6.5 million award to develop an underwater robot modeled on a manta ray.

The tests of Tunabot take place in a large lab in the Mechanical Engineering building at UVA Engineering, in a flow tank that takes up about a quarter of the room, and at Harvard University in a similar facility. The eyeless, finless replica fish is roughly 10 inches long; the biological equivalent can get up to seven feet long. A fishing line tether keeps the robot steady, while a green laser light cuts across the midline of the plastic fish. The laser measures the fluid motion shed by the robot with each sweep of its fabricated tail. As the current of water in the flow tank speeds up, the Tunabot’s tail and whole body move in a rapid bending pattern, similar to the way a live yellowfin tuna swims.

“We see in the fish robotics literature so far that there are really great systems others have made, but the data is often inconsistent in terms of measurement selection and presentation. It’s just the current state of the robotics field at the moment. Our paper about the Tunabot is significant because our comprehensive performance data sets the bar very high,” White said.

The relationship between biology and robotics is circular, Lauder said. “One reason I think we have a successful research program in this area is because of the great interaction between biologists and roboticists.” Each discovery in one branch informs the other, a type of educational feedback loop that is constantly advancing both the science and the engineering.

“We don’t assume that biology has evolved to the best solution,” Bart-Smith said. “These fishes have had a long time to evolve to a solution that enables them to survive, specifically, to eat, reproduce and not be eaten. Unconstrained by these requirements, we can focus solely on mechanisms and features that promote higher performance, higher speed, higher efficiency. Our ultimate goal is to surpass biology. How can we build something that looks like biology but swims faster than anything you see out there in the ocean?”

Learn more: In New Paper Published in Science Robotics, UVA Engineering-Led Team Unveils “Tunabot,” the First Robotic Fish to Keep Pace with a Yellowfin Tuna

 

The Latest on: Robotic fish

via Google News

 

The Latest on: Robotic fish

via  Bing News

 

World First: Undersea robot dispersed microscopic baby corals to repopulate parts of the Great Barrier Reef

Larvalbot moves across the coral reef

In a world first, an undersea robot has dispersed microscopic baby corals (coral larvae) to help scientists working to repopulate parts of the Great Barrier Reef during this year’s mass coral spawning event.

Ecology and technology have combined to give nature a helping hand, using a robot to deliver heat tolerant coral larvae directly onto the Great Barrier Reef in the first small scale pilot of a new technique to help restore and recover coral reefs.

In a world first, an undersea robot has dispersed microscopic baby corals (coral larvae) to help scientists working to repopulate parts of the Great Barrier Reef during this year’s mass coral spawning event.

Six weeks after winning the Great Barrier Reef Foundation’s $300,000 Out of the Blue Box Reef Innovation Challenge, Southern Cross University’s Professor Peter Harrison and QUT’s Professor Matthew Dunbabin trialled the ground-breaking initiative on Vlasoff Reef, near Cairns in north Queensland.

Professor Dunbabin engineered QUT’s reef protector RangerBot into LarvalBot specifically for the coral restoration project led by Professor Harrison.

The project builds on Professor Harrison’s successful larval reseeding technique piloted on the southern Great Barrier Reef in 2016 and 2017 in collaboration with the Great Barrier Reef Foundation, the Great Barrier Reef Marine Park Authority (GBRMPA) and Queensland Parks & Wildlife Service (QPWS), following successful small scale trials in the Philippines funded by the Australian Centre for International Agricultural Research.

“This year represents a big step up for our larval restoration research and the first time we’ve been able to capture coral spawn on a bigger scale using large floating spawn catchers then rearing them into tiny coral larvae in our specially constructed larval pools and settling them on damaged reef areas,” Professor Harrison said.

“Winning the GBRF’s Reef Innovation Challenge meant that we could increase the scale of the work planned for this year using mega-sized spawn catchers and fast track an initial trial of LarvalBot as a novel method of dispersing the coral larvae out on to the Reef.

“With further research and refinement, this technique has enormous potential to operate across large areas of reef and multiple sites in a way that hasn’t previously been possible.

“We’ll be closely monitoring the progress of settled baby corals over coming months and working to refine both the technology and the technique to scale up further in 2019.”

This research and the larval production process was also directly supported by the recent successful SBIR 2018 Coral larval restoration research project on Vlasoff Reef led by Professor Harrison with Katie Chartrand (James Cook University) and Associate Professor David Suggett (University of Technology Sydney), in collaboration with Aroona Boat Charters, the GBRMPA and QPWS.

With a current capacity to carry around 100,000 coral larvae per mission and plans to scale up to millions of larvae, the robot gently releases the larvae onto damaged reef areas allowing it to settle and over time develop into coral polyps or baby corals.

Professor Dunbabin said LarvalBot could be compared to ‘an underwater crop duster’ operating very safely to ensure existing coral wasn’t disturbed.

“During this year’s trial, the robot was tethered so it could be monitored precisely but future missions will see it operate alone and on a much larger scale,” Professor Dunbabin said.

“Using an iPad to program the mission, a signal is sent to deliver the larvae and it is gently pushed out by LarvalBot. It’s like spreading fertiliser on your lawn.

“The robot is very smart, and as it glides along we target where the larvae need to be distributed so new colonies can form and new coral communities can develop.

“We have plans to do this again in Australia and elsewhere and I’m looking forward to working with Professor Harrison and Southern Cross University, the Great Barrier Reef Foundation and other collaborators to help tackle an important problem.”

This project builds on the work by Professor Dunbabin who developed RangerBot to help control the coral-killing crown-of-thorns starfish which is responsible for 40 per cent of the reef’s decline in coral cover.

Great Barrier Reef Foundation Managing Director Anna Marsden said: “It’s exciting to see this project progress from concept to implementation in a matter of weeks, not years. The recent IPCC report highlights that we have a very short window in which to act for the long term future of the Reef, underscoring the importance of seeking every opportunity to give our reefs a fighting chance.

“This project is testament to the power of collaboration between science, business and philanthropy. With the support of the Tiffany & Co. Foundation, whose longstanding support for coral reef conservation globally spans almost two decades, our international call for innovations to help the Reef has uncovered a solution that holds enormous promise for restoring coral reefs at scales never before possible.”

Following the success of this initial trial in 2018, the researchers plan to fully implement their challenge-winning proposal in 2019, building even larger mega spawn-catchers and solar powered floating larval incubation pools designed to rear hundreds of millions of genetically diverse, heat-tolerant coral larvae to be settled on damaged reefs through a combination of larval clouds and LarvalBots.

Learn more: Robot makes world-first baby coral delivery to Great Barrier Reef

 

 

The Latest on: Repopulating corals

via Google News

 

The Latest on: Repopulating corals

via  Bing News

 

Underwater robot can identify and kill crown-of-thorns starfish while monitoring overall reef health

QUT Professor Matthew Dunbabin with RangerBot

An underwater drone that can keep watch on reef health and accurately identify and inject the devastating crown-of-thorns starfish is ready to be put to the test on the Great Barrier Reef, as a result of a collaboration between QUT, Google and the Great Barrier Reef Foundation.

Equipped with a high-tech vision system which allows it to ‘see’ underwater, and operated using a smart tablet, RangerBot is the low-cost, autonomous robot concept that won the 2016 Google Impact Challenge People’s Choice prize, enabling QUT roboticists to develop innovative robotics technology into a real-life reef protector.

Launching RangerBot at Townsville’s Reef HQ Aquarium today, QUT Professor Matthew Dunbabin said after almost two years of research, development and testing, RangerBot’s industry-leading technology is now ready to be put through its paces by those working to monitor and protect the Reef.

“RangerBot is the world’s first underwater robotic system designed specifically for coral reef environments, using only robot-vision for real-time navigation, obstacle avoidance and complex science missions,” Professor Dunbabin said.

“This multifunction ocean drone can monitor a wide range of issues facing coral reefs including coral bleaching, water quality, pest species, pollution and siltation. It can help to map expansive underwater areas at scales not previously possible, making it a valuable tool for reef research and management.

“RangerBot can stay under water almost three times longer than a human diver, gather more data, and operate in all conditions and at all times of the day or night, including where it may not be safe for a human diver.

“The robot is fitted with computer vision to ‘see’ where it’s going and avoid obstacles as well as multiple thrusters so it can move in every direction.

“We’ve ‘trained’ RangerBot to detect crown-of-thorns starfish – and only these coral-destroying starfish – in much the same way as people learn to differentiate between various forms of sea life. Using real time computer vision processed on board the robot, RangerBot can identify these deadly starfish with 99.4% accuracy.

“Once the identification is confirmed, RangerBot can instigate an injection which is fatal for the crown-of-thorns starfish, but doesn’t affect anything else on the reef,” he said.

Professor Dunbabin said unlike single-purpose marine robots – which are more manual and based on expensive acoustic technologies – RangerBot uses innovative vision-based technologies.

“We believe this represents a significant technology leap in both marine robotics and reef protection – the only autonomous, affordable, multi-function solution for effectively detecting and addressing threats to coral reefs,” Professor Dunbabin said.

“It’s an impressive piece of technology, but RangerBot is also deliberately low cost, to allow production to be scaled up once the next level of operational testing is completed and all the necessary approvals are in place.

“Weighing just 15kg and measuring 75cm, it takes just 15 minutes to learn how to operate RangerBot using a smart tablet.

“Our vision is to make RangerBots readily available and accessible to be deployed on the Reef where they’re most needed and to put them in the hands of reef managers, researchers and communities worldwide.

“Environmental robotics is a real passion of ours and we see so much potential for these advanced technologies to transform the way we protect the world’s coral reefs,” he said.

RangerBot

RangerBot is the result of the Great Barrier Reef Foundation teaming up with QUT roboticists Professor Matthew Dunbabin and Dr Feras Dayoub in 2016 to enter the Google Impact Challenge. As the People’s Choice winner, they secured $750,000 to take the project to the next level.

“We’re thrilled to see RangerBot come to fruition because this project is about giving those looking after our coral reefs the tools they need to protect them,” Great Barrier Reef Foundation Managing Director Anna Marsden said.

“Combining the expertise of innovators like Google and QUT, this project is a great example of harnessing technology to benefit the Reef.

“More than a billion people depend on coral reefs for their food and livelihood – they stand to lose the most if those important ecosystems are not protected.

“This project and partnership with QUT and Google is about putting these cost-effective, flexible and readily deployable ‘drones of the sea’ into the hands of the people at the front line of looking after and managing our coral reefs, as extra ‘hands and eyes’ to manage those critical environments.

“Even though the Great Barrier Reef is internationally acknowledged as the best managed reef globally, due to its size and complexity, effective management is a mammoth and expensive task.

“RangerBot has the potential to revolutionise the way we manage our oceans and is an important tool to have at our disposal in the quest to save our coral reefs,” she said.

 

The Australian Institute of Marine Science (AIMS) recently took part in trials with RangerBot on the Great Barrier Reef. AIMS is investigating new technology to boost its data collection and underwater observation capabilities to improve the health of coral reefs.

RangerBot’s capabilities have been extensively tested both in the lab and on the Reef. The next steps will involve further collaboration with the Great Barrier Reef Marine Park Authority, AIMS and others on the specific testing, review and approvals necessary to ensure RangerBot is set to take on Reef duty.

RangerBot builds on the original QUT-designed COTSbot prototype, taking that initial concept to an entirely new dimension with autonomous rather than tethered operation, a high tech vision system, enhanced mobility and the ability to monitor Reef health.

Learn more: Robot reef protector sees a new way to check Great Barrier Reef health

 

 

The Latest on: Autonomous underwater robots

via Google News

 

The Latest on: Autonomous underwater robots

via  Bing News

 

A soft transparent underwater robot moves with artificial muscles filled with water and no electric motor

via Scripps Institution of Oceanography at UC San Diego

An innovative, eel-like robot developed by engineers and marine biologists at the University of California can swim silently in salt water without an electric motor. Instead, the robot uses artificial muscles filled with water to propel itself. The foot-long robot, which is connected to an electronics board that remains on the surface, is also virtually transparent.

The team, which includes researchers from UC San Diego and UC Berkeley, details their work in the April 25 issue of Science Robotics. Researchers say the bot is an important step toward a future when soft robots can swim in the ocean alongside fish and invertebrates without disturbing or harming them. Today, most underwater vehicles designed to observe marine life are rigid and submarine-like and powered by electric motors with noisy propellers.

“Instead of propellers, our robot uses soft artificial muscles to move like an eel underwater without making any sound,” said Caleb Christianson, a Ph.D. student at the Jacobs School of Engineering at UC San Diego.

One key innovation was using the salt water in which the robot swims to help generate the electrical forces that propel it. The bot is equipped with cables that apply voltage to both the salt water surrounding it and to pouches of water inside of its artificial muscles.  The robot’s electronics then deliver negative charges in the water just outside of the robot and positive charges inside of the robot that activate the muscles. The electrical charges cause the muscles to bend, generating the robot’s undulating swimming motion. The charges are located just outside the robot’s surface and carry very little current so they are safe for nearby marine life.

“Our biggest breakthrough was the idea of using the environment as part of our design,” said Michael T. Tolley, the paper’s corresponding author and a professor of mechanical engineering at the Jacobs School at UC San Diego. “There will be more steps to creating an efficient, practical, untethered eel robot, but at this point we have proven that it is possible.”

Previously, other research groups had developed robots with similar technology. But to power these robots, engineers were using materials that need to be held in constant tension inside semi-rigid frames. The Science Robotics study shows that the frames are not necessary.

“This is in a way the softest robot to be developed for underwater exploration,” Tolley said.

The robot was tested inside salt-water tanks filled with jelly fish, coral and fish at the Birch Aquarium at the Scripps Institution of Oceanography at UC San Diego and in Tolley’s lab.

The conductive chambers inside the robot’s artificial muscles can be loaded with fluorescent dye (as shown in the video accompanying the study and this release). In the future, the fluorescence could be used as a kind of signaling system.

Next steps also include improving the robot’s reliability and its geometry. Researchers need to improve ballast, equipping the robot with weights so that it can dive deeper. For now, engineers have improvised ballast weights with a range of objects, such as magnets. In future work, researchers envision building a head for their eel robot to house a suite of sensors.

Learn more: Transparent Eel-like Soft Robot Can Swim Silently Underwater

 

The Latest on: Underwater robot

via Google News

 

The Latest on: Underwater robot

via  Bing News