Sea power with benefits gets real for Japan

via Okinawa Institute of Science and Technology (OIST) Graduate University

Professor Tsumoru Shintake at the Okinawa Institute of Science and Technology Graduate University (OIST) yearns for a clean future, one that is affordable and powered by sustainable energy. Originally from the high-energy accelerator field, in 2012 he decided to seek new energy resources—wind and solar were being explored in depth, but he moved toward the sea instead.

That year, Professor Shintake and the Quantum Wave Microscopy Unit at OIST began a project titled “Sea Horse,” aiming to harness energy from the Kuroshio ocean current that flows from the eastern coast of Taiwan and around the southern parts of Japan. This project uses submerged turbines anchored to the sea floor through mooring cables that convert the kinetic energy of sustained natural currents in the Kuroshio into usable electricity, which is then delivered by cables to the land. The initial phase of the project was successful, and the Unit is now searching for industry partners to continue into the next phase. But the OIST researchers also desired an ocean energy source that was cheaper and easier to maintain.

This is where the vigor of the ocean’s waves at the shoreline comes into play. “Particularly in Japan, if you go around the beach you’ll find many tetrapods,” Professor Shintake explains. Tetrapods are concrete structures shaped somewhat like pyramids that are often placed along a coastline to weaken the force of incoming waves and protect the shore from erosion. Similarly, wave breakers are walls built in front of beaches for the same purpose. “Surprisingly, 30% of the seashore in mainland Japan is covered with tetrapods and wave breakers.” Replacing these with “intelligent” tetrapods and wave breakers, Shintake explains, with turbines attached to or near them, would both generate energy as well as help to protect the coasts.

“Using just 1% of the seashore of mainland Japan can [generate] about 10 gigawats [of energy], which is equivalent to 10 nuclear power plants,” Professor Shintake explains. “That’s huge.”

In order to tackle this idea, the OIST researchers launched The Wave Energy Converter (WEC) project in 2013. It involves placing turbines at key locations near the shoreline, such as nearby tetrapods or among coral reefs, to generate energy. Each location allows the turbines to be exposed to ideal wave conditions that allow them not only to generate clean and renewable energy, but also to help protect the coasts from erosion while being affordable for those with limited funding and infrastructure.

One prime location to place turbines is in front of tetrapods at the shoreline. At this location, the turbines transform the energy from incoming waves into usable electricity—this in turn dissipates wave strength and protects the shoreline. These turbines can be easily installed and maintained by existing maintenance routes for the tetrapods. They can also be visually inspected from the shore on calm days.

Coral reefs are another type of location with strong breaking waves. Water moving from the deep sea over a shallow reef creates fast jet flows of water. Arrays of small WECs will harness electricity from the vortex flow of breaking waves. The design—dark-colored blades on top of white bodies with thin stems—is visually pleasing, and resembles a flock of birds or group of flowers.

The turbines themselves are built to withstand the forces thrust upon them during harsh wave conditions as well as extreme weather, such as a typhoon. The blade design and materials are inspired by dolphin fins—they are flexible, and thus able to release stress rather than remain rigid and risk breakage. The supporting structure is also flexible, “like a flower,” Professor Shintake explains. “The stem of a flower bends back against the wind,” and so, too, do the turbines bend along their anchoring axes. They are also built to be safe for surrounding marine life—the blades rotate at a carefully calculated speed that allows creatures caught among them to escape.

The blades of this five-blade turbine are made of a soft material and they rotate on their axis when influenced by ocean waves—the diameter of the turbine is about 0.7 meters. The axis is attached to a permanent magnet electric generator, which is the part of the turbine that transforms the ocean wave energy into usable electricity. The ceramic mechanical seal protects the electrical components inside of the body from any saltwater leakage. This design allows the turbine to function for ten years before it need replacing.

Now, Professor Shintake and the Unit researchers have completed the first steps of this project and are preparing to install the turbines—half-scale models, with 0.35-meter diameter turbines—for their first commercial experiment. The project includes installing two WEC turbines that will power LEDs for a demonstration.

“I’m imagining the planet two hundred years later,” Professor Shintake says. “I hope these [turbines] will be working hard quietly, and nicely, on each beach on which they have been installed.”

From left to right: Kenichiro Soga, Hideki Takebe, Jun Fujita, Katsutoshi Shirasawa, Professor Shintake. A WEC turbine is being held by Dr. Takebe on the left and a model of the Sea Horse turbine is shown on the right behind Professor Shintake.

The Latest on: Ocean power

via Google News and Bing News

Worth Repeating: Fleet of High-Tech Robot ‘Gliders’ to Explore Oceans

These instruments can explore the oceans like sailplanes

The Leibniz Institute of Marine Sciences (IFM-GEOMAR) in Kiel, Germany, recently obtained the biggest fleet of so-called gliders in Europe. These instruments can explore the oceans like sailplanes up to a depth of 1000 metres. In doing so they only consume as much energy as a bike light. In the next years up to ten of these high-tech instruments will take measurements to better understand many processes in the oceans. Currently scientists and technicians prepare the devices for their first mission as a ‘swarm’ in the tropical Atlantic.

They may look like mini-torpedoes, yet exclusively serve peaceful purposes. The payload of the two-metre-long yellow diving robots consists of modern electronics, sensors and high-performance batteries. With these devices the marine scientists can collect selective measurements from the ocean interior while staying ashore themselves. Moreover, the gliders not only transmit the data in real time, but they can be reached by the scientists via satellite telephone and programmed with new mission parameters.

As such the new robots represent an important supplement to previous marine sensor platforms.

“Ten year ago we started to explore the ocean systematically with profiling drifters. Today more than 3000 of these devices constantly provide data from the ocean interior,” explains Professor Torsten Kanzow, oceanographer at IFM-GEOMAR. This highly successful programme has one major disadvantage: the pathways of the drifters cannot be controlled.

“The new gliders have no direct motor, either. But with their small wings they move forward like sailplanes under water,” says Dr. Gerd Krahmann, a colleague of Professor Kanzow. In a zigzag movement, the glider cycles between a maximum depth of 1000 metres and the sea surface.

“By telephone we can ‘talk’ to the glider and upload a new course everytime it comes up,” explains Krahmann. A glider can carry out autonomous missions for weeks or even months. Every glider is equipped with instruments to measure temperature, salinity, oxygen and chlorophyll content as well as the turbidity of the sea water.

Read more . . .

First published in 2010

 

 

The Latest on: Robotic ocean exploration

via  Bing News

 

Enhanced by Zemanta

Taming Oceans for 24/7 Power

The Quantum Wave Microscopy Unit conducted towing experiment at sea to test the prototype of the ocean-current turbine.

The Quantum Wave Microscopy Unit conducted towing experiment at sea to test the prototype of the ocean-current turbine.

OIST team proposes a novel ocean-current turbine design.

Fossil fuels propelled the Industrial Revolution and subsequent technological advances. However, our future cannot be based on them, if only because they are a finite resource; and we are very close to exhausting them.

Solar and wind power is often seen as the main locomotive of the energy revolution. However, it is becoming increasingly clear that solar panels and wind turbines alone cannot provide all the energy we need, especially considering that energy consumption around the world is steadily growing. Due to day-night cycles and seasonal weather patterns, solar and wind power is inherently intermittent. Moreover, utility-scale power farms will require vast tracts of land.

Ocean currents are another source of power, comparable to fossil fuels in terms of consistency and reliability, and at the same time, clean and renewable.

In the journal, Renewable Energy, the Quantum Wave Microscopy Unit at Okinawa Institute of Science and Technology Graduate University (OIST) proposed a design for a submerged marine turbine to harness the energy of the Kuroshio Current, flowing along the Japanese coast. This design is especially suitable for regions regularly devastated by storms and typhoons, such as Japan, Taiwan, and the Philippines. The turbine operates in the middle layer of the current, 100 m below the surface, where the waters flow calmly and steadily, even during strong storms.

“Our design is simple, reliable, and power-efficient”, says Dr Katsutoshi Shirasawa, a staff scientist in the Quantum Wave Microscopy Unit. The turbine comprises a float, a counterweight, a nacelle to house electricity-generating components, and three blades. Minimising the number of components is essential for easy maintenance, low cost, and a low failure rate.

The OIST design is a hybrid of a kite and a wind turbine: an ocean-current turbine is anchored to seabed with a line and floats in the current while water rotates its three blades. Ocean currents are rather slow, averaging 1-1.5 m/s. However, water is over 800 times as dense as air, and even a slow current contains energy comparable to a strong wind. Additionally, currents do not stop or change direction.

The OIST team, led by Prof. Tsumoru Shintake, head of the Quantum Wave Microscopy Unit, built a prototype turbine and conducted various experiments to test its design and configuration. Results confirmed the robustness and stability of the turbine construction. The achieved efficiency is comparable to that of commercial wind turbines.

The design can easily be scaled up or down, depending on local conditions and needs. Dr. Shirasawa and his colleagues aspire to build an energy farm featuring 300 turbines 80 m in diameter. The expected output is about 1 GW — the equivalent of one nuclear reactor, capable of powering over 400,000 homes. This project will be an important step toward development of green energy.

Learn more: Taming Oceans for 24/7 Power

 

 

The Latest on: Ocean-current turbine

via  Bing News