Nature documentaries talk about threats to nature but rarely show those threats

Image source: Wikimedia Commons

Researchers analysing recent BBC and Netflix nature documentaries found that although they increasingly mention threats to nature, visual depictions of these threats remain scarce, potentially misleading audiences on the state of the natural world.

The findings are discussed in a Perspective published in the British Ecological Society journal People and Nature

Researchers from Bangor University, University of Kent, Newcastle University and University of Oxford coded the scripts from the four most recent David Attenborough narrated series. They found the Netflix series Our Planet dedicated 15% of the script to environmental threats and conservation, far exceeding the BBC series Planet Earth II and Dynasties, with only Blue Planet II coming close to this figure.

The researchers also highlighted the uniqueness of Our Planet in weaving the topic of human impacts on nature throughout each episode rather than being the subject of a dedicated final episode, which was done in Blue Planet II.

Despite the more frequent mentions of threats to nature, the researchers noted how visually similar Our Planet was to the other series they analysed. It had few visual depictions of the threats and largely showed the natural world as pristine and separate from humans, something nature documentaries have often been criticised for in the past.

Professor Julia Jones, lead author, said: “One could argue that by using camera angles to avoid showing any sign of people, nature film makers are being disingenuous, and even actively misleading audiences. The viewer may be led to believe that things cannot be that bad for biodiversity as what they are seeing on the screen shows nature, for the most part, doing fine.

“The inextricable link between threats to the natural world and the high consumption of western lifestyles would be more difficult to ignore if the presence, or even dominance, of commercial agriculture, mining and transport infrastructure were more visible in the landscapes, reducing the space for the awe-inspiring wild spectacles shown.”

Nature documentaries have the potential to elicit behavioural change and increase support for conservation but to what extent is not well understood. “Previous studies have shown that documentaries can increase willingness amongst viewers to make personal lifestyle changes, increase support for conservation organisations, and generate positivity towards an issue, making policy change more likely. However, we still don’t understand the mechanisms by which these changes take place. Considerable research is needed to investigate how viewing nature, portrayed as threatened or pristine, in a documentary affects people in ways which might, ultimately, contribute to saving it.” Said Laura Thomas-Walters, co-author.

The researchers suggest collaboration between filmmakers and researchers could help us understand the impacts of these documentaries. Dr Diogo Vesrissimo, co-author, said: “there is limited evidence on the causal relationships between viewing a documentary and subsequent behaviour change. Nature documentary producers should work with researchers to better understand these positive and negative impacts”.

“Empirical data needs to be collected to examine whether showing anthropogenic impacts is actually more effective at spurring behaviour change amongst audiences.” Added Laura Thomas-Walters.

Read the full paper :

Jones JPG, Thomas?Walters L, Rust NA, Veríssimo D. Nature documentaries and saving nature: Reflections on the new Netflix series Our Planet. People Nat. 2019;00:1–6. https://doi.org/10.1002/pan3.10052

Learn more: Nature documentaries increasingly talk about threats to nature, but still don’t show them

 

The Latest on: Nature documentaries

via  Bing News

 

Protecting Nature on the Fly

With the laser data, a 3D map of the surface vegetation can be obtained.

With the laser data, a 3D map of the surface vegetation can be obtained.

Monitoring Europe’s vast nature protection areas used to be extremely difficult. Thanks to computer algorithms developed at the Vienna University of Technology, this can now be done using aircraft and laser technology

Simply declaring a region as a nature protection area is not enough, regular monitoring of its ecological condition is also necessary. Since Nature protection areas already cover almost one fifth of the surface of the European Union, it is impossible to inspect such a vast area in the traditional way on foot. Therefore, new methods are being developed to monitor Europe’s nature protection areas from the air. Short laser pulses are sent to the ground, and information on the status of the habitat can be deduced from the reflected light signals using elaborate computer algorithms.

Laser Scanning from the Air

“The rules of the Natura 2000 network of nature protection areas request the evaluation of the conservation status of protected region at least every six years”, says Professor Norbert Pfeifer (Vienna University of Technology). “This can only be achieved with the help of remote sensing.”

Planes fly at an altitude of 500 to 2000 metres, scanning a strip 300 to 800 metres wide. About ten points per square meter are sampled using an infrared laser pulsing half a million times a second. The pulses are reflected and return to the plane. From their travel time, the exact distance between the plane and the ground can be calculated, creating a detailed 3D map of the landscape.

Software Identifies Structure

“Our team has developed special classification software which can use this data to distinguish different types of vegetation”, says Norbert Pfeifer. Even disturbing factors such as weeds and vehicle tracks can be identified.

The 3D map obtained by the laser pulses contains much more information than a simple aerial photograph. When a forest is scanned, not all the laser light is reflected by the tree tops. The lower layers of the vegetation are surveyed as well. Ecologically healthy woodland does not only consist of various tree and shrub layers, but also of a layer of herbs and grasses. Whether or not these sub-canopy levels exist can be mathematically deduced from the infrared data.

“When people process remote sensing data for ecological monitoring, they usually focus on very specific parameters which are easy to derive”, says Norbert Pfeifer. “Our approach is quite different. We use the data to calculate precisely the same parameters as they are collected in a site inspection by human ecologists.” Therefore the data complies with EU regulations and can directly be compared to older data.

Given the power of the new method, it should be possible to go one step further. “We believe that an even better characterization of a region’s biodiversity can be obtained when we do not focus on site inspection parameters but rather try to define new parameters which are easier to obtain from above”, says Pfeifer.

Agreement Between Humans and Computer

The newly developed computer algorithms were tested in the nature protection area of Ágota-puszta, Püspökladány (Hungary), consisting of an intricate mosaic of salt meadows, loess grasslands and marsh areas. Part of the field data was used to adjust the algorithms. With the rest of the data, the method was validated. “We achieved an agreement of 80 to 90% between our data and on-site observations”, says Norbert Pfeifer. “This is a huge success. It is about the same level of agreement that would be expected if two different people assess the same region.”

Read more: Protecting Nature on the Fly

 

The Latest on: Monitoring Nature

via  Bing News