Examples of organic electronics: flexible solar cells (left, supplied by Epishine AB), electronic paper (center) and piezoelectric textiles (right). Photomontage: Johan Bodell/Chalmers University of Technology
Researchers from Chalmers University of Technology, Sweden, have discovered a simple new tweak that could double the efficiency of organic electronics. OLED-displays, plastic-based solar cells and bioelectronics are just some of the technologies that could benefit from their new discovery, which deals with “double-doped” polymers.
The majority of our everyday electronics are based on inorganic semiconductors, such as silicon. Crucial to their function is a process called doping, which involves weaving impurities into the semiconductor to enhance its electrical conductivity. It is this that allows various components in solar cells and LED screens to work.
For organic – that is, carbon-based – semiconductors, this doping process is similarly of extreme importance. Since the discovery of electrically conducting plastics and polymers, a field in which a Nobel Prize was awarded in 2000, research and development of organic electronics has accelerated quickly. OLED-displays are one example which are already on the market, for example in the latest generation of smartphones. Other applications have not yet been fully realised, due in part to the fact that organic semiconductors have so far not been efficient enough.
Doping in organic semiconductors operates through what is known as a redox reaction. This means that a dopant molecule receives an electron from the semiconductor, increasing the electrical conductivity of the semiconductor. The more dopant molecules that the semiconductor can react with, the higher the conductivity – at least up to a certain limit, after which the conductivity decreases. Currently, the efficiency limit of doped organic semiconductors has been determined by the fact that the dopant molecules have only been able to exchange one electron each.
But now, in an article in the scientific journal Nature Materials, Professor Christian Müller and his group, together with colleagues from seven other universities demonstrate that it is possible to move two electrons to every dopant molecule.
“Through this ‘double doping’ process, the semiconductor can therefore become twice as effective,” says David Kiefer, PhD student in the group and first author of the article.
According to Christian Müller, this innovation is not built on some great technical achievement. Instead, it is simply a case of seeing what others have not seen.
“The whole research field has been totally focused on studying materials, which only allow one redox reaction per molecule. We chose to look at a different type of polymer, with lower ionisation energy. We saw that this material allowed the transfer of two electrons to the dopant molecule. It is actually very simple,” says Christian Müller, Professor of Polymer Science at Chalmers University of Technology.
The discovery could allow further improvements to technologies which today are not competitive enough to make it to market. One problem is that polymers simply do not conduct current well enough, and so making the doping techniques more effective has long been a focus for achieving better polymer-based electronics. Now, this doubling of the conductivity of polymers, while using only the same amount of dopant material, over the same surface area as before, could represent the tipping point needed to allow several emerging technologies to be commercialised.
“With OLED displays, the development has come far enough that they are already on the market. But for other technologies to succeed and make it to market something extra is needed. With organic solar cells, for example, or electronic circuits built of organic material, we need the ability to dope certain components to the same extent as silicon-based electronics. Our approach is a step in the right direction,” says Christian Müller.
The discovery offers fundamental knowledge and could help thousands of researchers to achieve advances in flexible electronics, bioelectronics and thermoelectricity. Christian Müller’s research group themselves are researching several different applied areas, with polymer technology at the centre. Among other things, his group is looking into the development of electrically conducting textiles and organic solar cells.
Learn more: Breakthrough in organic electronics
The Latest on: Organic electronics
via Google News
The Latest on: Organic electronics
- Bending organic semiconductor could boost electrical flowon December 4, 2019 at 4:03 pm
Credit: Vitaly Podzorov/Rutgers University-New Brunswick. Slightly bending semiconductors made of organic materials can roughly double the speed of electricity flowing through them. This could benefit ...
- Bending an organic semiconductor can boost electrical flowon December 3, 2019 at 7:19 am
Slightly bending semiconductors made of organic materials can roughly double the speed of electricity flowing through them and could benefit next-generation electronics such as sensors and solar cells ...
- pinMOS: Novel memory device combining OLED and insulator can be written on and read out optically or electricallyon November 25, 2019 at 4:16 am
Scientists of the Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and the Center for Advancing Electronics Dresden (cfaed) at TU Dresden have developed a novel storage ...
- Plastics (Organic) Electronics Market is expected to Witness a Steady Growth by 2025on November 21, 2019 at 4:04 am
Nov 21, 2019 (HTF Market Intelligence via COMTEX) -- Global Plastics (Organic) Electronics Market Professional Survey Report 2019 is latest research study released by HTF MI evaluating the market, ...
- Large scale integrated circuits produced in printing presson November 11, 2019 at 7:50 am
The result shows that we are again leading the field, thanks to the close collaboration between basic research at the Laboratory of Organic Electronics, LOE, and applied research at RISE", says Magnus ...
- Global Organic Electronics Market 2019 Industry Analysis, Share, Growth, Sales, Trends, Supply, Forecast 2025on November 9, 2019 at 9:55 am
A field of materials science that concerns with the design, characterization, synthesis, and application of organic small molecules and polymers which show desirable electronic properties like ...
- Global Organic Electronics Industryon October 17, 2019 at 5:41 am
New York, Oct. 17, 2019 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Global Organic Electronics Industry" - https://www.reportlinker.com ...
- Global Organic Electronics Conductive Material Market Growth, Emerging Trends, Top Key Players (2019-2025): Basf Se, Bayer Materialscience AG, Duponton September 26, 2019 at 6:31 am
Los Angeles, CA -- (SBWIRE) -- 09/26/2019 -- Global Organic Electronics Conductive Material Market report is a professional and in-depth study on the market overview, market dynamics, competitive ...
- 5th International Fall School on Organic Electronics (IFSOE-2019)on September 19, 2019 at 5:00 pm
Moscow region, Istrinskiy district, hotel "Soyuz" (Gazprom) (about 60 km from Moscow) Moscow region, Istrinskiy district, hotel "Soyuz" (Gazprom) (about 60 km from Moscow), Moscow region, Istrinskiy ...
via Bing News