##### Quantum computers promise to revolutionize the future of computing. A scientist from the Technical University of Munich (TUM) together with his colleagues from the University of Waterloo and from IBM have now demonstrated for the first time that quantum computers do indeed offer advantages over conventional computers.

For many years, quantum computers were not much more than an idea. Today, companies, governments and intelligence agencies are investing in the development of quantum technology. Robert König, professor for the theory of complex quantum systems at the TUM, in collaboration with David Gosset from the Institute for Quantum Computing at the University of Waterloo and Sergey Bravyi from IBM, has now placed a cornerstone in this promising field.

##### WHY SHOULD QUANTUM COMPUTERS BE FASTER?

Conventional computers obey the laws of classical physics. They rely on the binary numbers 0 and 1. These numbers are stored and used for mathematical operations. In conventional memory units, each bit – the smallest unit of information – is represented by a microscopic dot on a microchip. Each of these dots can hold a charge that determines whether the bit is set to 1 or 0.

In a quantum computer, however, a bit can be both 0 and 1 at the same time. This is because the laws of quantum physics allow electrons to be in multiple places at one time. Quantum bits, or qubits, thus exist in multiple overlapping states. This so-called superposition allows quantum computers to perform operations on many values in one fell swoop whereas a single conventional computer typically must execute these operations sequentially. The promise of quantum computing lies in the ability to solve certain problems significantly faster.

##### FROM CONJECTURE TO PROOF

König and his colleagues have now conclusively demonstrated the advantage of quantum computers. To this end, they developed a quantum circuit that can solve a specific “difficult” algebraic problem. The new circuit has a simple structure: it only performs a fixed number of operations on each qubit. Such a circuit is referred to as having a constant depth. In their work, the researchers prove that the problem at hand cannot be solved using classical constant-depth circuits. They furthermore answer the question of why the quantum algorithm beats any comparable classical circuit: The quantum algorithm exploits the non-locality of quantum physics.

Prior to this work, the advantage of quantum computers had neither been proven nor experimentally demonstrated – notwithstanding that evidence pointed in this direction. One example is Shor’s quantum algorithm, which efficiently solves the problem of prime factorization. However, it is merely a complexity-theoretic conjecture that this problem cannot be efficiently solved without quantum computers. It is also conceivable that the right approach has simply not yet been found for classical computers.

##### A STEP ON THE ROAD TO QUANTUM COMPUTING

Robert König considers the new results primarily as a contribution to complexity theory. “Our result shows that quantum information processing really does provide benefits – without having to rely on unproven complexity-theoretic conjectures,” he says. Beyond this, the work provides new milestones on the road to quantum computers. Because of its simple structure, the new quantum circuit is a candidate for a near-term experimental realization of quantum algorithms.

Learn more: First proof of quantum computer advantage

##### The Latest on: Quantum computers

*via Google News*

##### The Latest on: Quantum computers

- Scientists Discover A Brand-New State Of Matter That Could Improve Quantum Computerson August 16, 2019 at 9:30 am
Matter can take many forms, from the familiar solid, liquid, and gas to the more complex states found only by tugging at the limits of physics. Researchers have now discovered a new peculiar state of ...

- Thales helps organizations combat the future security threats of quantum computingon August 16, 2019 at 7:40 am
Login or register now to gain instant access to the rest of this premium content! Thales has announced its collaboration with ISARA Corp. and ID Quantique (IDQ), leading providers of complementary ...

- New Report Forecasts $780 Million Quantum Computing Market in 2025 and Profiles 42 Leading Quantum Computing Organizationson August 15, 2019 at 11:28 am
CROZET, Va., Aug 15, 2019 (GLOBE NEWSWIRE via COMTEX) -- According to Quantum Computing Strategies: 2019 https://www.insidequantumtechnology.com/product/quantum-computing-strategies-2019/, a new ...

- Newfound superconductor material could be the 'silicon of quantum computers'on August 15, 2019 at 11:04 am
A potentially useful material for building quantum computers has been unearthed at the National Institute of Standards and Technology (NIST), whose scientists have found a superconductor that ...

- Investing in quantum computingon August 15, 2019 at 7:57 am
Quantum computing has promised much, and absorbed enormous resources, without delivering a great deal in practical terms yet. However, the rationale for investing in research remains impeccable. In ...

- Quantum system virtually cooled to half of its actual temperatureon August 15, 2019 at 7:03 am
Due to their quantum properties, quantum simulators can perform certain tasks like this that are out of the reach of classical computers, which cannot leverage quantum entanglement and superposition.

- IBM Q Wants You To Try Out Its Online Quantum Computer (Radio)on August 14, 2019 at 10:03 am
Bob Sutor, Vice President, IBM Q Strategy & Ecosystem, on building public and commercial quantum computing systems for business and science applications. Hosted by Lisa Abramowicz and Paul Sweeney.

- Airbus Looks For A Quantum LEAP In Computing Poweron August 13, 2019 at 11:23 pm
Once thought of as impossible due to its complexity, quantum computing could be a game-changing technology across industries—from science to medicine. In the aerospace industry, quantum computing is ...

- The Basics of Quantum Computing—A Tutorialon August 13, 2019 at 1:11 pm
In classic computing, uncertainty is unacceptable. With quantum computers, however, it’s an asset. Quantum computers have an innate ability to learn about the world, dealing in probability, as they ...

*via Bing News*