An electron microscope image of the memristor array. Credit: Yeonjoo Jeong, Nanoelectronics group, University of Michigan.
A new way of arranging advanced computer components called memristors on a chip could enable them to be used for general computing, which could cut energy consumption by a factor of 100.
This would improve performance in low power environments such as smartphones or make for more efficient supercomputers, says a University of Michigan researcher.
“Historically, the semiconductor industry has improved performance by making devices faster. But although the processors and memories are very fast, they can’t be efficient because they have to wait for data to come in and out,” said Wei Lu, U-M professor of electrical and computer engineering and co-founder of memristor startup Crossbar Inc.
Memristors might be the answer. Named as a portmanteau of memory and resistor, they can be programmed to have different resistance states—meaning they store information as resistance levels. These circuit elements enable memory and processing in the same device, cutting out the data transfer bottleneck experienced by conventional computers in which the memory is separate from the processor.
However, unlike ordinary bits, which are 1 or 0, memristors can have resistances that are on a continuum. Some applications, such as computing that mimics the brain (neuromorphic), take advantage of the analog nature of memristors. But for ordinary computing, trying to differentiate among small variations in the current passing through a memristor device is not precise enough for numerical calculations.
Lu and his colleagues got around this problem by digitizing the current outputs—defining current ranges as specific bit values (i.e., 0 or 1). The team was also able to map large mathematical problems into smaller blocks within the array, improving the efficiency and flexibility of the system.
Computers with these new blocks, which the researchers call “memory-processing units,” could be particularly useful for implementing machine learning and artificial intelligence algorithms. They are also well suited to tasks that are based on matrix operations, such as simulations used for weather prediction. The simplest mathematical matrices, akin to tables with rows and columns of numbers, can map directly onto the grid of memristors.
The memristor array situated on a circuit board. Credit: Mohammed Zidan, Nanoelectronics group, University of Michigan.
Once the memristors are set to represent the numbers, operations that multiply and sum the rows and columns can be taken care of simultaneously, with a set of voltage pulses along the rows. The current measured at the end of each column contains the answers. A typical processor, in contrast, would have to read the value from each cell of the matrix, perform multiplication, and then sum up each column in series.
“We get the multiplication and addition in one step. It’s taken care of through physical laws. We don’t need to manually multiply and sum in a processor,” Lu said.
His team chose to solve partial differential equations as a test for a 32×32 memristor array—which Lu imagines as just one block of a future system. These equations, including those behind weather forecasting, underpin many problems science and engineering but are very challenging to solve. The difficulty comes from the complicated forms and multiple variables needed to model physical phenomena.
When solving partial differential equations exactly is impossible, solving them approximately can require supercomputers. These problems often involve very large matrices of data, so the memory-processor communication bottleneck is neatly solved with a memristor array. The equations Lu’s team used in their demonstration simulated a plasma reactor, such as those used for integrated circuit fabrication.
Learn more: Memory-processing unit could bring memristors to the masses
The Latest on: Memristors
via Google News
The Latest on: Memristors
- Russians Build Device That Imitates Biological Memoryon November 25, 2019 at 2:55 pm
The study and design of memristors is usually linked with the subject of neurocomputers, a blanket term for both digital computers that imitate human brains and hypothetical machines made of human ...
- CyberSwarm’s memristor-based approach to secure AI and IoT.on October 15, 2019 at 11:44 am
Transparent electronic components (including memristors). 1 trillion new IoT devices will be produced by 2035, according to ARM. What does that imply? Firstly, they will need enough computing power to ...
- First Programmable Memristor Computeron August 2, 2019 at 10:37 pm
Memristors and other nonvolatile memory seem to lend themselves to the task particularly well. However, most demonstrations of in-memory computing have been in standalone accelerator chips that either ...
- First Programmable Memristor Computer Could Bring AI Down From the Cloudon July 22, 2019 at 11:54 am
It is, in essence, an electrical resistor with a memory that depends on variable resistance. Memristors store and process information in the same location, so they can sidestep the biggest bottleneck ...
- Possibilities of the biosimilar principle of learning are shown for a memristor-based neural networkon July 12, 2019 at 7:44 am
This principle is difficult to implement on the basis of memristors, since it requires controlled precise changes of memristor conductances, as opposed to local rules. Such precise control is not ...
- Memristors Market: Research Methodology Focuses On Exploring Major Factors Influencing the Industry Development 2024on July 11, 2019 at 1:31 am
Jul 11, 2019 (HTF Market Intelligence via COMTEX) -- AMA recently published a detailed study of over 180+ pages in its repository on 'Memristors' market covering interesting aspects of market with ...
- Memristors Market 2019: Company Profiles, Emerging Technologies, Trends, Industry Growth, Segments, Landscape and Demand by Forecast to 2023on June 6, 2019 at 6:49 pm
Jun 07, 2019 (The Expresswire via COMTEX) -- The latest trending report Global Memristors s Market by Manufacturers, Regions, Type and Application, Forecast to 2023 offered by DecisionDatabases.com is ...
- A brain-plausible neuromorphic on-the-fly learning system implemented with magnetic domain wall analog memristorson April 26, 2019 at 11:50 am
Here, we describe a general-purpose spiking neuromorphic system that can solve on-the-fly learning problems, based on magnetic domain wall analog memristors (MAMs) that exhibit many different states ...
- New Technologies Give Neuromorphic Computing Better Memorieson January 22, 2019 at 7:10 am
The six types of devices reviewed include resistive random‐access memory (ReRAM), diffusive memristors, phase change memory (PCM), spintronics-based magneto-resistive random‐access memory (MRAM), ...
via Bing News