Ilia Ivanov (left) from Oak Ridge National Laboratory’s Center for Nanophase Materials Science, Chris Tulk (right) from ORNL’s Spallation Neutron Source and their collaborators received unexpected results from a neutron scattering experiment at SNS that could open a new pathway for the synthesis of novel materials and also help explain the formation of complex organic structures observed in interstellar space.
‘Beautiful accident’ leads to advances in high pressure materials synthesis
Unexpected results from a neutron scattering experiment at the Department of Energy’s Oak Ridge National Laboratory could open a new pathway for the synthesis of novel materials and also help explain the formation of complex organic structures observed in interstellar space.
In a paper published in the journal Angewandte Chemie International Edition, the multi-institutional team of researchers, led by Haiyan Zheng from the Center for High Pressure Science and Technology Advanced Research in Beijing, formerly of the Carnegie Institution of Washington, discuss their discovery of using high pressures—rather than high temperatures—to initiate chemical reactions.
Their research will significantly improve scientists’ understanding of complex carbon structures and may offer clues to the formation of amino acids from nonbiological processes.
“This discovery was somewhat of a beautiful accident,” said Ilia Ivanov, a research scientist at the ORNL’s Center for Nanophase Materials Sciences, a Department of Energy Office of Science User Facility.
Ivanov explains that it all began during a neutron diffraction experiment at ORNL’s Spallation Neutron Source—also a DOE Office of Science User Facility. While performing a high-pressure polymerization experiment on the chemical compound acetonitrile (CH3CN) using the SNAP instrument, researchers detected the unexpected presence of ammonia. Ammonia is a colorless gas but has a very distinct odor that can be detected in even minute quantities.
“If you put acetonitrile under high pressures, you’ll bring molecules together and see it reacting with itself, and eventually, it forms either a solid yellowish polymer or, as we found out, a black, carbon-rich material,” Ivanov said.
Acetonitrile is one of a number of organic compounds that have been discovered in outer space and is thought to be implicated in the origins of simple amino acids, one of the basic molecules of life. In a cosmic event such as an asteroid collision, the pressures and temperatures generated can be very large, and in the presence of acetonitrile, could mimic the experiment the researchers conducted at SNAP.
The formation of the yellowish polymer was the expected result of the SNAP experiment, said SNAP instrument scientist Chris Tulk, but a surprise was just ahead.
“When the sample was depressurized and the pressure cell opened, ammonia was detected. It has a very distinct scent,” Tulk said. “We thought, ‘there shouldn’t be ammonia in this sample right now.’ So we started looking for what could have happened to first form, and then release, ammonia.”
The experimental researchers then collaborated with experts in advanced electron microscopy, materials science and computing to understand the mysterious results. Based on a combination of computer simulations and microscopy, they concluded that nitrogen had left the acetonitrile sample, resulting in an enriched carbon-based material.
“The carbon material that was left was imaged using our best electron microscopes,” Ivanov said. “It had onion-like layers—one shell of carbon sheet after another. So nitrogen went somewhere, but where did it go? It escaped in the form of ammonia gas.”
Because a temperature-based catalyst is usually required to convert a polymer into another material, this ability to cause a chemical reaction through pressure alone is unusual.
“I wanted to continue doing these experiments to determine how much we could control the structure of a carbon material through pressure, not temperature,” said Ivanov, comparing the experimental conditions with those found in household pressure cookers.
“In most cases, pressure cookers still use high temperatures to help foods cook thoroughly. But with our experiments, we’ve been able to use a sort of pressure cooking at room temperature, albeit at much higher pressures.”
While a pressure cooker operates at 0.1 megapascals, these experiments used much higher pressures—up to 23,000 megapascals, which corresponds to the pressure found 650 kilometers below the Earth’s surface at the boundary between its upper and lower mantle.
“This paper is truly exciting for us,” Tulk said. “Using this process with the addition of oxygen, possibly by the addition of carbon dioxide or water into the reactants, complex carbon structures similar to the kind we suspect throughout early formation of amino acids on Earth may be realized.”
The researchers note that cross-disciplinary expertise in neutron sciences and nanoscience, together with Energy Frontier Research in Extreme Environments (EFree) Center, made the research possible. EFree is a DOE Energy Frontier Research Center.
“One without the other seemed like a one-sided mission. Two aspects of research, structure and functionality, were brought together through the synergetic work. Through joint efforts like this, we continue to help users drive the discovery of new materials and new functionalities,” Ivanov said.
Learn more: ‘Beautiful accident’ leads to advances in high pressure materials synthesis
The Latest on: High pressures rather than high temperatures initiate new chemical reactions
via Google News
The Latest on: High pressures rather than high temperatures initiate new chemical reactions
- Control and Monitor Nanoparticle Biopharmaceutical and Polymer Product Processon December 10, 2019 at 9:54 am
Typical process analytical technologies monitor process variables such as temperature, pH, pressure, or feedstock depletion. However, ultraDAWN measures product attributes—relevant properties of the ...
- How to live with mega-fires? Portugal’s feral forests may hold the secreton December 6, 2019 at 3:59 am
That June afternoon, Rodrigues and the rest of her crew of bombeiros had just killed a small blaze with their high-pressure hoses ... saw something categorically worse than he had ever seen before: ...
- Politicians and developers have built a house of cardson December 3, 2019 at 6:00 am
Weather ... high emission gases which adds to the destruction of the environment that should be sustaining. Why are we not putting the effort into developing beyond our major cities? Stop the ...
- Sorry Science Fans, Discovering A 70-Solar-Mass Black Hole Is Routine, Not Impossibleon December 2, 2019 at 11:05 pm
When stars live, the internal radiation pressure that results from nuclear fusion counteracts the gravitational force trying to collapse the star down. When a very massive star runs out of fuel in its ...
- Taking Cell Lines to the Bankon December 2, 2019 at 4:38 am
Scott, PhD, assistant professor of biological sciences and director of bioinformatics at Delaware State University: “The cells you start with are often different than the cells you ... imposes a ...
- The most impressive numbers from the Ravens' eight-game winning streakon December 1, 2019 at 5:51 pm
The driving force behind their start? A franchise-record eight-game winning streak ... The Ravens have Super Bowl aspirations, and along that journey, Tucker will likely be faced with another ...
- Meet the Principal: Christos Gaitatzis of Omagh High School on the importance of non-selective and integrated educationon December 1, 2019 at 2:09 pm
When the job of principal at Omagh High came up last summer I decided to apply for it. We knew we wanted to bring up Eliza near family and spend more time together. That was more important than being ...
- ‘Beautiful Accident’ Leads To Advances In High Pressure Materials Synthesison November 17, 2016 at 4:00 pm
Unexpected results from a neutron scattering experiment at the Department of Energy’s Oak Ridge National Laboratory could open a new pathway ... of using high pressures — rather than high temperatures ...
- 'Beautiful accident' leads to advances in high pressure materials synthesison November 15, 2016 at 4:00 pm
Unexpected results from a neutron scattering experiment could open a new pathway for the synthesis ... discuss their discovery of using high pressures -- rather than high temperatures -- to initiate ...
via Bing News