Silk could be new ‘green’ material for next-generation batteries

via phys.org

via phys.org

It also worked for over 10,000 cycles with only a 9 percent loss in stability

Lithium-ion batteries have enabled many of today’s electronics, from portable gadgets to electric cars.  Lithium-ion batteries have enabled many of today’s electronics, from portable gadgets to electric cars. But much to the frustration of consumers, none of these batteries last long without a recharge. Now scientists report in the journal ACS Nano the development of a new, “green” way to boost the performance of these batteries — with a material derived from silk.

Chuanbao Cao and colleagues note that carbon is a key component in commercial Li-ion energy storage devices including batteries and supercapacitors. Most commonly, graphite fills that role, but it has a limited energy capacity. To improve the energy storage, manufacturers are looking for an alternative material to replace graphite. Cao’s team wanted to see if they could develop such a material using a sustainable source.

The researchers found a way to process natural silk to create carbon-based nanosheets that could potentially be used in energy storage devices. Their material stores five times more lithium than graphite can — a capacity that is critical to improving battery performance. It also worked for over 10,000 cycles with only a 9 percent loss in stability. The researchers successfully incorporated their material in prototype batteries and supercapacitors in a one-step method that could easily be scaled up, the researchers note.

But much to the frustration of consumers, none of these batteries last long without a recharge. Now scientists report in the journal ACS Nano the development of a new, “green” way to boost the performance of these batteries — with a material derived from silk.

Chuanbao Cao and colleagues note that carbon is a key component in commercial Li-ion energy storage devices including batteries and supercapacitors. Most commonly, graphite fills that role, but it has a limited energy capacity. To improve the energy storage, manufacturers are looking for an alternative material to replace graphite. Cao’s team wanted to see if they could develop such a material using a sustainable source.

The researchers found a way to process natural silk to create carbon-based nanosheets that could potentially be used in energy storage devices. Their material stores five times more lithium than graphite can — a capacity that is critical to improving battery performance. It also worked for over 10,000 cycles with only a 9 percent loss in stability. The researchers successfully incorporated their material in prototype batteries and supercapacitors in a one-step method that could easily be scaled up, the researchers note.

via American Chemical Society

 

The Latest on: Next-generation batteries

via Google News

 

The Latest on: Next-generation batteries

via  Bing News

 

You are most welcome to leave your comments or ideas

This site uses Akismet to reduce spam. Learn how your comment data is processed.