Nanosatellites are smartphone-sized spacecraft that can perform simple, yet valuable, space missions.
Dozens of these little vehicles are now tirelessly orbiting the earth performing valuable functions for NASA, the Department of Defense and even private companies.
Nanosatellites borrow many of their components from terrestrial gadgets: miniaturized cameras, wireless radios and GPS receivers that have been perfected for hand-held devices are also perfect for spacecraft. However, according to Michigan Technological University’s L. Brad King, there is at least one technology need that is unique to space: “Even the best smartphones don’t have miniaturized rocket engines, so we need to develop them from scratch.”
Miniature rockets aren’t needed to launch a nanosatellite from Earth. The small vehicles can hitchhike with a regular rocket that is going that way anyway. But because they are hitchhikers, these nanosats don’t always get dropped off in their preferred location. Once in space, a nanosatellite might need some type of propulsion to move it from its drop-off point into its desired orbit. This is where the micro rocket engine comes in.
For the last few years, researchers around the world have been trying to build such rockets using microscopic hollow needles to electrically spray thin jets of fluid, which push the spacecraft in the opposite direction. The fluid propellant is a special chemical known as an ionic liquid. A single thruster needle is finer than a human hair, less than one millimeter long and produces a thrust force equivalent to the weight of a few grains of sand. A few hundred of these needles fit in a postage-stamp-size package and produce enough thrust to maneuver a nanosatellite.
These new electrospray thrusters face some design challenges, however. “Because they are so small and intricate, they are expensive to make, and the needles are fragile,” says King, the Ron and Elaine Starr Professor of Mechanical Engineering-Engineering Mechanics. “They are easily destroyed either by a careless bump or an electrical arc when they’re running.”
To get around the problem, King and his team have developed an elegant strategy: eliminate the expensive and tedious microfabrication required to make the needles by letting Mother Nature take care of the assembly. “We’re working with a unique type of liquid called a ferrofluid that naturally forms a stationary pattern of sharp tips in the liquid surface,” he says. “Each tip in this self-assembling structure can spray a jet of fluid just like a micro-needle, so we don’t actually have to make any needles.”
Ferrofluids have been around since the 1960s. They are made of tiny magnetic particles suspended in a solvent that moves when magnetic force is applied. King illustrates with a tiny container holding a ferrofluid made of kerosene and iron dust. The fluid lies flat until he puts a magnet beneath it. Then suddenly, the liquid forms a regular series of peaks reminiscent of a mountain range or Bart Simpson’s haircut. These peaks remain perfectly stable despite vigorous shaking and even turning the container upside down. It is, nonetheless, completely liquid, as a finger-tip touch proves undeniably. When the magnet is removed, the liquid relaxes to a perfectly flat surface.
King’s team was trying to make an ionic liquid that behaved like a ferrofluid when they learned about a research team at the University of Sydney that was already making these substances. The Sydney team was using magnetic nanoparticles made by the life-sciences company Sirtex, which are used to treat liver cancer. “They sent us a sample, and we’ve used it to develop a thruster,” King said. “Now we have a nice collaboration going. It’s amazing that the same technology used to treat cancer can also function as a micro rocket for spacecraft.”
King’s first thruster is made of a one-inch block of aluminum containing a small ring of the special fluid. When a magnet is placed beneath the block, the liquid forms a tiny, five-tipped crown. When an electric force is then applied to the ferrofluid crown liquid jets emerge from each point, producing thrust. “It’s fascinating to watch,” King says. “The peaks get taller and skinnier, and taller and skinnier, and at some point the rounded tips instantly pop into nano-sharp points and start emitting ions.”
The thruster appears to be almost immune to permanent damage. The tips automatically heal themselves and re-grow if they are somehow damaged. King’s team has already demonstrated its self-healing properties, albeit inadvertently. “We accidentally turned the voltage up too high, and the tips exploded in a small arc,” King says. While this would spell death for a typical thruster, “A completely new crown immediately formed from the remaining ferrofluid and once again resumed thrusting.”
The Latest on: Nanosat Micro Rockets
- This month's SpaceX's 'rideshare' rocket may help change the internet foreveron December 22, 2018 at 5:23 am
That's specifically not the case for a nanosat as small as Swarm's SpaceBEEs, which can share a rocket with dozens and dozens of others ... SpaceX is planning to launch a constellation of over 4,000 ...
- Nanosat-enabled IoT start-up Myriota to create 50 jobs by 2020on October 9, 2018 at 8:53 am
Grant with one of Myriota's low power micro transmitters The satellites relay the messages ... The cubesat reached orbit via a NASA Delta 2 rocket from the Vandenberg Air Force Base in California in ...
- Ursa Major Technologies wants outsourcing engines to be the normon September 8, 2018 at 5:00 pm
Rocket Lab, Virgin Orbit and Vector Space Systems — three ... “For all of these reasons I believe in the future of micro and nanosat market, and they have to have propulsion systems to power them into ...
- ISRO launches its 100th satellite into spaceon January 15, 2018 at 4:00 pm
India today successfully launched weather observation satellite Cartosat 2 Series and 29 other spacecraft onboard its dependable Polar rocket from here ... space of about 17.33 minutes since lift-off.
- Innovative Aerospace Start-ups Featured in LightSpeed's New Space Pitch & Demo Dayon October 26, 2015 at 5:00 pm
Phase Four: a nanosat micro-thruster company using plasma at its core ... www. atlasground.com Additive Rocket Company, a UCSD based company leveraging sophisticated designs, know-how and technologies ...
- From cancer treatment to ion thruster: The newest little idea for nanosat micro rocketson August 29, 2013 at 4:02 pm
The next generation of micro rockets could be built around a magnetic fluid that appears to defy gravity. Nanosatellites are smartphone-sized spacecraft that can perform simple, yet valuable, space ...
- From cancer treatment to ion thruster: The newest little idea for nanosat micro rocketson August 28, 2013 at 4:32 am
This is where the micro rocket engine comes in. For the last few years, researchers around the world have been trying to build such rockets using microscopic hollow needles to electrically spray thin ...
- From Cancer Treatment to Ion Thruster: The Newest Little Idea for Nanosat Micro Rocketson August 26, 2013 at 5:00 pm
This is where the micro rocket engine comes in. For the last few years, researchers around the world have been trying to build such rockets using microscopic hollow needles to electrically spray thin ...
- Minotaur rocket poised to send research to new heightson November 17, 2010 at 4:00 pm
The Minotaur 4 rocket poised ... also carries a micro-discharge plasma thruster. The Formation Autonomous Spacecraft with Thruster, Relnav, Attitude and Crosslink, or FASTRAC, program was selected by ...
- SpaceDev Awarded Nanosat Hybrid Propulsion Contracton June 14, 2005 at 1:30 am
--(BUSINESS WIRE)--June 14, 2005--SpaceDev (OTCBB: SPDV) has been awarded approximately $100,000 to begin developing a nanosat hybrid propulsion ... and operation of sophisticated micro- and ...
via Google News and Bing News