
THE MAGNETOACTIVE ACOUSTIC METAMATERIAL (CENTER FRONT) AFFIXED TO A PETRI DISH. PHOTO/ASHLEEN KNUTSEN
A team led by USC Viterbi researchers developed 3-D printed acoustic metamaterials that can be switched on and off remotely using a magnetic field
Researchers have been pushing the capabilities of materials by carefully designing precise structures that exhibit abnormal properties that can control acoustic or optical waves. However, these metamaterials are constructed in fixed geometries, meaning their unique abilities are always fixed. Now, new 3-D printed metamaterial developed by a team led by USC Viterbi researchers can be remotely switched between active control and passive states.
USC Viterbi Assistant Professor Qiming Wang and Ph.D. student Kun-Hao Yu, along with MIT Professor Nicholas Fang and University of Missouri Professor Guoliang Huang, have developed 3-D printed metamaterials capable of blocking sound waves and mechanical vibrations. Unlike current metamaterials, these can be turned on or off remotely using a magnetic field. Their materials can be used for noise cancellation, vibration control and sonic cloaking, which can be used to hide objects from acoustic waves.
“Traditional engineering materials may only shield from acoustics and vibrations, but few of them can switch between on and off,” said Yu.
“When you fabricate a structure, the geometry cannot be changed, which means the property is fixed. The idea here is, we can design something very flexible so that you can change it using external controls,” said Wang, an assistant professor of civil and environmental engineering.
Metamaterials can be used to manipulate wave phenomena such as radar, sound and light and have been used to develop technology such as cloaking devices and improved communication systems. The team’s metamaterials are able to control environmental sounds and structural vibrations, which have similar waveforms. By 3-D printing a deformable material containing iron particles in a lattice structure, their metamaterials can be compressed using a magnetic field.
“You can apply an external magnetic force to deform the structure and change the architecture and the geometry inside it. Once you change the architecture, you change the property,” Wang said. “We wanted to achieve this kind of freedom to switch between states. Using magnetic fields, the switch is reversible and very rapid.”
The magnetic field compresses the material, but unlike a physical contact force like a metal plate, the material is not constrained. Therefore, when an acoustic or mechanical wave contacts the material, it perturbs it, generating the unique properties that block sound waves and mechanical vibrations of certain frequencies from passing through.
Two negatives make a positive
The mechanism relies on the abnormal properties of their metamaterials – negative modulus and negative density. In everyday materials, these are both positive.
“Material with a negative modulus or negative density can trap sounds or vibrations within the structure through local resonances so that they cannot transfer through it,” Yu said.
Typically, when you push on an object, it pushes back against you. In contrast, objects with a negative modulus attract you, pulling you towards them as you push. Objects exhibiting a negative density work in a similarly contradictory way. When you push these objects away from you, they instead move toward you.
One negative property, either negative modulus or negative density, can work independently to block noise and stop vibrations within certain frequency regimes. However, when working together, the noise or vibration can pass through again. The team is able to maintain versatile control over the metamaterial, switching among double-positive (sound passing), single-negative (sound blocking), and double-negative (sound passing) just by switching the magnetic field.
“This is the first time researchers have demonstrated reversible switching among these three phases using remote stimuli,” Wang said.
Future directions
Wang believes they may be able to demonstrate another unique property called negative refraction, in which a wave goes through the material and comes back in at an unnatural angle, which according to Wang is, “anti-physics.” They plan to study this phenomenon further once they are able to fabricate larger structures.
“We want to scale down or scale up our fabrication system,” Wang said. “This would give us more opportunity to work on a larger range of wavelengths.”
With their current system, they can only 3-D print material with a beam diameter between a micron to a millimeter. But size matters. Smaller beams would control higher frequency waves, and larger beams would affect lower frequency waves.
“There are indeed a number of possible applications for smartly controlling acoustics and vibrations,” Yu said. “Traditional engineering materials may only shield from acoustics and vibrations, but few of them can switch between on and off.”
Learn more: 3-D printed active metamaterials for sound and vibration control
The Latest on: Acoustic metamaterials
via Google News
The Latest on: Acoustic metamaterials
-
Researchers 3D Print Acoustic Metamaterials That Can Block Sound Waves and Vibrations
on April 13, 2018 at 6:21 am
Metamaterials, which can morph according to their environment, make up a new class of 3D printable, engineered surfaces which can perform nature-defying tasks, like making holograms and shaping sound. Recently, a collaborative team led by researchers from ... […]
-
3D Printed Metamaterial Isn’t Constrained When Compressed By Magnets
on April 12, 2018 at 8:47 am
Metamaterials have been the focus for many researchers for years. Researchers have been attempting to design structures that have abnormal properties with the ability to control acoustic or optical waves. There have been major developments made in ... […]
-
3-D printed active metamaterials for sound and vibration control
on April 12, 2018 at 7:58 am
Researchers have been pushing the capabilities of materials by carefully designing precise structures that exhibit abnormal properties that can control acoustic or optical waves. However, these metamaterials are constructed in fixed geometries, meaning ... […]
-
3D printed metamaterials can be switched on and off remotely for sound and vibration control
on April 12, 2018 at 7:19 am
This latest breakthrough is unique in that a magnetic field can be used remotely to switch the metamaterial’s acoustic properties on or off. The project was led by USC Viterbi Assistant Professor Qiming Wang and Ph.D. student Kun-Hao Yu, along with MIT ... […]
-
Duke's new 3D printed metamaterial can perfectly redirect and reflect soundwaves
on April 11, 2018 at 11:50 am
The design makes use of a class of materials known as metamaterials, which are artificial materials ... of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts'', published in the journal Nature Communications. […]
-
Metamaterial Perfectly Redirects and Reflects Acoustic Waves
on April 11, 2018 at 7:56 am
Metamaterials researchers from the Duke University have shown the design and structure of a thin material that can regulate the redirection and reflection of sound waves with nearly flawless efficiency. This metamaterial surface has been engineered to ... […]
-
Thin engineered material perfectly redirects and reflects sound
on April 10, 2018 at 11:22 am
Duke University. (2018, April 10). Thin engineered material perfectly redirects and reflects sound: Metamaterial device controls transmission and reflection of acoustic waves. ScienceDaily. Retrieved April 13, 2018 from www.sciencedaily.com/releases ... […]
-
Metamaterial device controls transmission and reflection of acoustic waves
on April 10, 2018 at 9:08 am
This metamaterial surface has been engineered to perfectly and simultaneously control the transmission and reflection of incoming sound waves. Credit: Junfei Li Metamaterials researchers at Duke University have demonstrated the design and construction of a ... […]
-
Metamaterial Market Research Industry Report by Material Type, Application, Vertical - 2018 Global Deep Insight
on April 1, 2018 at 2:43 am
the upcoming applications segment is further sub segmented into non – linear metamaterials, and acoustic metamaterial. On the basis of vertical, the global metamaterial market is segmented into automotive, aerospace and defense, consumer electronics ... […]
via Bing News