Jan 092018

Mature iPSC-derived RPE cells are shown by super-resolution confocal microscopy. One primary cilium resides in the center of each cell. RPE cell borders are stained showing
tight junction markers. Credit: Ruchi Sharma, Ph.D., NEI.

Stem cell-derived retinal cells need primary cilia to support survival of light-sensing photoreceptors

Scientists at the National Eye Institute (NEI), part of the National Institutes of Health, report that tiny tube-like protrusions called primary cilia on cells of the retinal pigment epithelium (RPE)—a layer of cells in the back of the eye—are essential for the survival of the retina’s light-sensing photoreceptors. The discovery has advanced efforts to make stem cell-derived RPE for transplantation into patients with geographic atrophy, otherwise known as dry age-related macular degeneration (AMD), a leading cause of blindness in the U.S. The study appears in the January 2 Cell Reports.

“We now have a better idea about how to generate and replace RPE cells, which appear to be among the first type of cells to stop working properly in AMD,” said the study’s lead investigator, Kapil Bharti, Ph.D., Stadtman investigator at the NEI. Bharti is leading the development of patient stem cell-derived RPE for an AMD clinical trial set to launch in 2018.

In a healthy eye, RPE cells nourish and support photoreceptors, the cells that convert light into electrical signals that travel to the brain via the optic nerve. RPE cells form a layer just behind the photoreceptors. In geographic atrophy, RPE cells die, which causes photoreceptors to degenerate, leading to vision loss.

Bharti and his colleagues are hoping to halt and reverse the progression of geographic atrophy by replacing diseased RPE with lab-made RPE. The approach involves using a patient’s blood cells to generate induced-pluripotent stem cells (iPSCs), cells capable of becoming any type of cell in the body. iPSCs are grown in the laboratory and then coaxed into becoming RPE for surgical implantation.

Attempts to create functional RPE implants, however, have hit a recurring obstacle: iPSCs programmed to become RPE cells have a tendency to get developmentally stuck, said Bharti. “The cells frequently fail to mature into functional RPE capable of supporting photoreceptors. In cases where they do mature, however, RPE maturation coincides with the emergence of primary cilia on the iPSC-RPE cells.”

The researchers tested three drugs known to modulate the growth of primary cilia on iPSC-derived RPE. As predicted, the two drugs known to enhance cilia growth significantly improved the structural and functional maturation of the iPSC-derived RPE. One important characteristic of maturity observed was that the RPE cells all oriented properly, correctly forming a single, functional monolayer. The iPSC-derived RPE cell gene expression profile also resembled that of adult RPE cells. And importantly, the cells performed a crucial function of mature RPE cells: they engulfed the tips of photoreceptor outer segments, a pruning process that keeps photoreceptors working properly.

By contrast, iPSC-derived RPE cells exposed to the third drug, an inhibitor of cilia growth, demonstrated severely disrupted structure and functionality.

As further confirmation of their observations, when the researchers genetically knocked down expression of cilia protein IFT88, the iPSC-derived RPE showed severe maturation and functional defects, as confirmed by gene expression analysis. Tissue staining showed that knocking down IFT88 led to reduced iPSC-derived RPE cell density and functional polarity, i.e., cells within the RPE tissue pointed in the wrong direction.

Bharti and his group found similar results in iPSC-derived lung cells, another type of epithelial cell with primary cilia. When iPSC-derived lung cells were exposed to drugs that enhance cilia growth, immunostaining confirmed that the cells looked structurally mature.

The report suggests that primary cilia regulate the suppression of the canonical WNT pathway, a cell signaling pathway involved in embryonic development. Suppression of the WNT pathway during RPE development instructs the cells to stop dividing and to begin differentiating into adult RPE, according to the researchers.

The researchers also generated iPSC-derived RPE from a patient with ciliopathy, a disorder that causes severe vision loss due to photoreceptor degeneration. The patient’s ciliopathy was associated with mutations of cilia gene CEP290. Compared to a healthy donor, iPSC-derived RPE from the ciliopathy patient had cilia that were smaller. The patient’s iPSC-derived RPE also had maturation and functional defects similar to those with IFT88 knockdown.

Further studies in a mouse model of ciliopathy confirmed an important temporal relationship: Looking across several early development stages, the RPE defects preceded the photoreceptor degeneration, which provides additional insights into ciliopathy-induced retinal degeneration.

Learn more: NIH discovery brings stem cell therapy for eye disease closer to the clinic


The Latest on: Dry age-related macular degeneration
  • HEALTH: Am I at risk of losing my sight?
    on February 24, 2018 at 3:02 pm

    Q I’m 66 and have been diagnosed with age-related macular degeneration (AMD) and am panicking about possibly ... If you have early-stage dry AMD, a study of 121 patients by the Nutrition Research Centre Ireland offers hope. While it is vital to eat ... […]

  • Macular Degeneration: Managing This Vision Condition
    on February 23, 2018 at 11:42 am

    Age-related macular degeneration is the leading cause of ... Up to 90 percent of cases are "dry" macular degeneration, according to the American Academy of Ophthalmology. Dry macular degeneration involves small deposits of fatty protein that form on ... […]

  • Eye doctor is sentenced in $73 million Medicare fraud
    on February 22, 2018 at 11:10 am

    “Specifically, the Court finds that Defendant routinely falsely diagnosed patients with either wet or dry Age Related Macular Degeneration. This mis-diagnosis allowed Defendant routinely and as a matter of standard practice to subject his patients to ... […]

  • (2018-2023) Global Age-related Macular Degeneration Industry-Report Analysis Added by MarketResearchNest.com
    on February 19, 2018 at 2:51 am

    the Age-related Macular Degeneration market is primarily split into:- Wet AMD, Dry AMD; Market Research Nest (MRN) is an offering of GRN Research Pvt. Ltd. It is a one-stop-shop for market research products and services. At MRN, we offer reports from ... […]

  • What is age-related macular degeneration?
    on February 18, 2018 at 11:50 am

    When drusen occur in our macula, which is the part of the retina responsible for the very center of our vision, it is called age-related macular degeneration. There are two types of ARMD: dry and wet. Dry ARMD is the more common and the less vision ... […]

  • Europe Dry Age-Related Macular Degeneration Market and Competitive Landscape Report 2017 - Research and Markets
    on February 6, 2018 at 4:00 pm

    The "Europe Dry Age-Related Macular Degeneration Market and Competitive Landscape - 2017" report has been added to Research and Markets' offering. Europe Dry Age-Related Macular Degeneration Market and Competitive Landscape - 2017, provides comprehensive ... […]

  • New Drug Slows Progression of Dry Age-Related Macular Degeneration
    on October 11, 2017 at 4:31 am

    An international team of researchers has found a way to slow the progression of an advanced form of age-related macular degeneration (AMD), a leading cause of irreversible, severe vision loss in Western countries. “I’m delighted with the results. […]

  • What Is Macular Degeneration?
    on May 9, 2017 at 3:36 pm

    Another common age-related condition ... usually have both wet and dry, which work together to affect their vision. So even if the wet form is remedied, they'll still have the dry variety. And although macular degeneration more commonly happens ... […]

  • Age-related macular degeneration
    on March 28, 2016 at 3:24 am

    What is age-related macular degeneration? Age-related macular degeneration ... There are two types of macular degeneration—wet and dry. The dry form is by far the most common type. The wet form is much less common, but it happens more quickly and is ... […]

  • Gene Linked to 'Dry' Macular Degeneration
    on August 26, 2008 at 5:00 pm

    WEDNESDAY, Aug. 27 (HealthDay News) -- Scientists from the United States and China have identified the first gene directly associated with the onset of severe "dry" macular degeneration, one of two forms of age-related macular degeneration that currently ... […]

via Google News and Bing News

Other Interesting Posts

Leave a Reply

%d bloggers like this: