Nov 282017
 

Origami-inspired artificial muscles are capable of lifting up to 1,000 times their own weight, simply by applying air or water pressure. Credit: Shuguang Li / Wyss Institute at Harvard University

 

Origami-inspired muscles are both soft and strong, and can be made for less than $1

Soft robotics has made leaps and bounds over the last decade as researchers around the world have experimented with different materials and designs to allow once rigid, jerky machines to bend and flex in ways that mimic and can interact more naturally with living organisms. However, increased flexibility and dexterity has a trade-off of reduced strength, as softer materials are generally not as strong or resilient as inflexible ones, which limits their use.

Now, researchers at the Wyss Institute at Harvard University and MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have created origami-inspired artificial muscles that add strength to soft robots, allowing them to lift objects that are up to 1,000 times their own weight using only air or water pressure, giving much-needed strength to soft robots. The study will be published this week in Proceedings of the National Academy of Sciences (PNAS).

“We were very surprised by how strong the actuators [aka, “muscles”] were. We expected they’d have a higher maximum functional weight than ordinary soft robots, but we didn’t expect a thousand-fold increase. It’s like giving these robots superpowers,” says Daniela Rus, Ph.D., the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT and one of the senior authors of the paper.

“Artificial muscle-like actuators are one of the most important grand challenges in all of engineering,” adds  Rob Wood, Ph.D., corresponding author of the paper and Founding Core Faculty member of the Wyss Institute, who is also the Charles River Professor of Engineering and Applied Sciences at Harvard’s John A. Paulson School of Engineering and Applied Sciences (SEAS). “Now that we have created actuators with properties similar to natural muscle, we can imagine building almost any robot for almost any task.”

Each artificial muscle consists of an inner “skeleton” that can be made of various materials, such as a metal coil or a sheet of plastic folded into a certain pattern, surrounded by air or fluid and sealed inside a plastic or textile bag that serves as the “skin.” A vacuum applied to the inside of the bag initiates the muscle’s movement by causing the skin to collapse onto the skeleton, creating tension that drives the motion. Incredibly, no other power source or human input is required to direct the muscle’s movement; it is determined entirely by the shape and composition of the skeleton.

“One of the key aspects of these muscles is that they’re programmable, in the sense that designing how the skeleton folds defines how the whole structure moves. You essentially get that motion for free, without the need for a control system,” says first author Shuguang Li, Ph.D., a Postdoctoral Fellow at the Wyss Institute and MIT CSAIL. This approach allows the muscles to be very compact and simple, and thus more appropriate for mobile or body-mounted systems that cannot accommodate large or heavy machinery.

Artificial muscle-like actuators are one of the most important grand challenges in all of engineering.

ROBERT WOOD

“When creating robots, one always has to ask, ‘Where is the intelligence – is it in the body, or in the brain?’” says Rus. “Incorporating intelligence into the body (via specific folding patterns, in the case of our actuators) has the potential to simplify the algorithms needed to direct the robot to achieve its goal. All these actuators have the same simple on/off switch, which their bodies then translate into a broad range of motions.”

The team constructed dozens of muscles using materials ranging from metal springs to packing foam to sheets of plastic, and experimented with different skeleton shapes to create muscles that can contract down to 10% of their original size, lift a delicate flower off the ground, and twist into a coil, all simply by sucking the air out of them.

Not only can the artificial muscles move in many ways, they do so with impressive resilience. They can generate about six times more force per unit area than mammalian skeletal muscle can, and are also incredibly lightweight; a 2.6-gram muscle can lift a 3-kilogram object, which is the equivalent of a mallard duck lifting a car. Additionally, a single muscle can be constructed within ten minutes using materials that cost less than $1, making them cheap and easy to test and iterate.

These muscles can be powered by a vacuum, a feature that makes them safer than most of the other artificial muscles currently being tested. “A lot of the applications of soft robots are human-centric, so of course it’s important to think about safety,” says Daniel Vogt, M.S., co-author of the paper and Research Engineer at the Wyss Institute. “Vacuum-based muscles have a lower risk of rupture, failure, and damage, and they don’t expand when they’re operating, so you can integrate them into closer-fitting robots on the human body.”

“In addition to their muscle-like properties, these soft actuators are highly scalable. We have built them at sizes ranging from a few millimeters up to a meter, and their performance holds up across the board,” Wood says. This feature means that the muscles can be used in numerous applications at multiple scales, such as miniature surgical devices, wearable robotic exoskeletons, transformable architecture, deep-sea manipulators for research or construction, and large deployable structures for space exploration.

The team was even able to construct the muscles out of the water-soluble polymer PVA, which opens the possibility of robots that can perform tasks in natural settings with minimal environmental impact, as well as ingestible robots that move to the proper place in the body and then dissolve to release a drug. “The possibilities really are limitless. But the very next thing I would like to build with these muscles is an elephant robot with a trunk that can manipulate the world in ways that are as flexible and powerful as you see in real elephants,” Rus says.

“The actuators developed through this collaboration between the Wood laboratory at Harvard and Rus group at MIT exemplify the Wyss’ approach of taking inspiration from nature without being limited by its conventions, which can result in systems that not only imitate nature, but surpass it,” says the Wyss Institute’s Founding Director Donald Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at HMS and the Vascular Biology Program at Boston Children’s Hospital, as well as Professor of Bioengineering at SEAS.

Learn more: Artificial muscles give soft robots superpowers

 

The Latest on: Artificial muscles
  • EPFL: Donation to create a Center for Artificial Muscles (project with Inselspital)
    on December 12, 2017 at 3:04 am

    Thanks to a 12 million franc donation from the Werner Siemens-Foundation, EPFL will set up a Center for Artificial Muscles, collaborating initially with the University Hospital of Bern (Inselspital) and then with the University Hospital of Zurich. […]

  • Artificial muscles give soft robots superpowers
    on December 7, 2017 at 2:17 pm

    Soft robotics has made leaps and bounds over the last decade as researchers around the world have experimented with different materials and designs to allow once rigid, jerky machines to bend and flex in ways that mimic and can interact more naturally with ... […]

  • It Bleeds. It Breathes. It's a Lifelike Artificial Human Corpse!
    on December 4, 2017 at 7:52 am

    SynDaver Labs' artificial cadavers are uncannily close to the real thing ... accurate medical models fabricated by the company SynDaver Labs. All of the body's muscles, organs and systems are meticulously represented, and unlike traditional models made ... […]

  • Flexing Artificial Muscles
    on December 3, 2017 at 7:16 pm

    S cientists at the Massachusetts Institute of Technology and Harvard University have developed a variety of origami-inspired artificial muscles that can lift up to a thousand times their own weight — and yet be dexterous enough to grip and raise a ... […]

  • Video Friday: Pepper at Work, Robot Muscles, and NASA's Next Rover
    on November 30, 2017 at 4:00 pm

    Here’s a nice long demo of Toyota’s new T-HR3, showing how flexible it is. Flexible, and sassy. Artificial muscles could make soft robots safer and stronger. Researchers at the Wyss Institute, Harvard SEAS, and MIT CSAIL have developed a novel design ... […]

  • These Artificial Muscles From MIT and Harvard Could Give Robots 'Superpowers'
    on November 30, 2017 at 4:23 am

    Researchers from MIT and Harvard say they are on their way to creating robots with “superpowers.” Scientists from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and Harvard’s Wyss Institute for Biologically Inspired ... […]

  • Complex new artificial muscles could let a duck lift an entire car
    on November 29, 2017 at 12:00 am

    Soft robots that look like complex Origami structures could one day be used in a variety of fields for all sorts of different tasks, including lifting or moving heavy objects. These artificial muscles would only need air or some type of fluid to perform ... […]

  • Artificial muscles give 'superpower' to robots
    on November 27, 2017 at 8:40 pm

    Miami (AFP) - Inspired by the folding technique of origami, US researchers said Monday they have crafted cheap, artificial muscles for robots that give them the power to lift up to 1,000 times their own weight. The advance offers a leap forward in the ... […]

  • Inspired by origami, scientists build artificial muscle that lifts 1,000 times its own weight
    on November 26, 2017 at 11:00 pm

    Scientists at the Massachusetts Institute of Technology and Harvard University have developed a variety of origami-inspired artificial muscles that can lift up to a thousand times their own weight — and yet be dexterous enough to grip and raise a ... […]

via Google News and Bing News

Other Interesting Posts

Leave a Reply

%d bloggers like this: