Sep 152017
 

Stuart Wolpert/UCLA
By working in extremely controlled conditions, Eric Hudson and his colleagues could observe properties of atoms and molecules that have previously been hidden from view.

UCLA study paves the way for creating on and off buttons for chemical reactions

UCLA physicists have pioneered a method for creating a unique new molecule that could eventually have applications in medicine, food science and other fields. Their research, which also shows how chemical reactions can be studied on a microscopic scale using tools of physics, is reported in the journal Science.

For the past 200 years, scientists have developed rules to describe chemical reactions that they’ve observed, including reactions in food, vitamins, medications and living organisms. One of the most ubiquitous is the “octet rule,” which states that each atom in a molecule that is produced by a chemical reaction will have eight outer orbiting electrons. (Scientists have found exceptions to the rule, but those exceptions are rare.)

But the molecule created by UCLA professor Eric Hudson and colleagues violates that rule. Barium-oxygen-calcium, or BaOCa+, is the first molecule ever observed by scientists that is composed of an oxygen atom bonded to two different metal atoms.

Normally, one metal atom (either barium or calcium) can react with an oxygen atom to produce a stable molecule. However, when the UCLA scientists added a second metal atom to the mix, a new molecule, BaOCa+, which no longer satisfied the octet rule, had been formed.

Other molecules that violate the octet rule have been observed before, but the UCLA study is among the first to observe such a molecule using tools from physics — namely lasers, ion traps and ultra-cold atom traps.

Hudson’s laboratory used laser light to cool tiny amounts of the reactant atoms and molecules to an extremely low temperature — one one-thousandth of a degree above absolute zero — and then levitate them in a space smaller than the width of a human hair, inside of a vacuum chamber. Under these highly controlled conditions, the scientists could observe properties of the atoms and molecules that are otherwise hidden from view, and the “physics tools” they used enabled them to hold a sample of atoms and observe chemical reactions one molecule at a time.

The ultra-cold temperatures used in the experiment can also be used to simulate the reaction as it would occur in outer space. That could help scientists understand how certain complex molecules, including some that could be precursors to life, came to exist in space, Hudson said.

The researchers found that when they brought together calcium and barium methoxide inside of their system under normal conditions, they would not react because the atoms could not find a way to rearrange themselves to form a stable molecule. However, when the scientists used a laser to change the distribution of the electrons in the calcium atom, the reaction quickly proceeded, producing a new molecule, CaOBa+.

The approach is part of a new physics-inspired subfield of chemistry that uses the tools of ultra-cold physics, such as lasers and electromagnetism, to observe and control how and when single-particle reactions occur.

UCLA graduate student Prateek Puri, the project’s lead researcher, said the experiment demonstrates not only how these techniques can be used to create exotic molecules, but also how they can be used to engineer important reactions. The discovery could ultimately be used to create new methods for preserving food (by preventing unwanted chemical reactions between food and the environment) or developing safer medications (by eliminating the chemical reactions that cause negative side effects).

“Experiments like these pave the way for developing new methods for controlling chemistry,” Puri said. “We’re essentially creating ‘on buttons’ for reactions.”

Hudson said he hopes the work will encourage other scientists to further narrow the gap between physics and chemistry, and to demonstrate that increasingly complex molecules can be studied and controlled. He added that one key to the success of the new study was the involvement of experts from various fields: experimental physicists, theoretical physicists and a physical chemist.

A key player in the research is already making a name for itself in Hollywood. A device called the integrated ion-trap-time-of-flight mass spectrometer, which was invented by Hudson’s lab and which was used to discover the reaction — was featured on a recent episode of the sitcom “The Big Bang Theory.”

“The device enables us to detect and identify the products of reactions on the single-particle level, and for us, it has really been a bridge between chemistry and physics,” said Michael Mills, a UCLA graduate student who worked on the project. “We were delighted to see it picked up by the show.”

Learn more: In step toward ‘controlling chemistry,’ physicists create a new type of molecule, atom by atom

 

The Latest on: Controlling chemistry
  • Denis Chem Lab: Outcome of board meeting
    on September 19, 2017 at 9:58 am

    We kindly want to inform you that the Company in their meeting held on September 19, 2017. Denis Chem Lab Limited has informed BSE that the Board of Directors of the Company in their meeting held on 19th September, 2017 have considered and approved the ... […]

  • In step toward controlling chemistry, physicists create a new molecule, atom by atom
    on September 16, 2017 at 3:30 pm

    Physicists have discovered a unique new molecule that could lead to many useful applications, and show how chemical reactions can be studied on a microscopic scale using tools of physics. UCLA physicists have pioneered a method for creating a unique new ... […]

  • In step toward ‘controlling chemistry,’ physicists create a new type of molecule, atom by atom
    on September 14, 2017 at 12:24 pm

    UCLA physicists have pioneered a method for creating a unique new molecule that could eventually have applications in medicine, food science and other fields. Their research, which also shows how chemical reactions can be studied on a microscopic scale ... […]

  • Why Don’t We All Speak the Same Language? (Earth 2.0 Series)
    on September 13, 2017 at 8:41 pm

    Furthermore, it found the impact of linguistic factors was still strong even after controlling for “common religion ... in the elite natural sciences like physics, biology, chemistry, geology, which is overwhelmingly English. By overwhelmingly, I ... […]

  • Brain-Machine Interface Isn't Sci-Fi Anymore
    on September 13, 2017 at 4:00 am

    But the motions Kaifosh was making to control the game were barely perceptible ... (Another lead scientist is Steve Demers, a physicist working in computational chemistry who helped create the award-winning “bullet time” visual effect for the Matrix ... […]

  • 31 Thoughts: Making sense of Matt Duchene’s situation
    on September 12, 2017 at 10:31 am

    In a recent Czech TV interview, he indicated that he didn’t like the idea of not controlling his destiny (i.e. an in ... They know where he’s going, they know his reads. That’s what chemistry is. They know his reads, they know what he’s thinking. […]

  • Preventing Blackouts: Building a Smarter Power Grid
    on September 11, 2017 at 2:43 pm

    This control system is not good enough to track disturbances in ... Neuroscience. Evolution. Health. Chemistry. Physics. Technology. […]

  • Ask Dr. NerdLove: I Just Want Sex, But These Guys All Want A Relationship
    on September 10, 2017 at 9:41 am

    But after they relax there’s great rapport, we have chemistry and dates last hours with talking and ... you can’t let her having a sad control your future. Let’s game this out a little. How long does Jenny’s broken heart get to dictate who you ... […]

  • Berry: Love/Hate for Week 1
    on September 6, 2017 at 8:00 pm

    (Much of that was Dallas controlling the clock and getting eaten alive in the ... and while Bennett may be as talented as any TE as he has played with, the chemistry figures to be a work in progress. The Hawks held opposing TE groups below nine fantasy ... […]

  • Quantum control: May the electric force be with you
    on August 21, 2014 at 3:37 am

    Importantly, this is achieved without the use of multiphoton transitions, which invariably lead to higher-excited-state chemistry. The challenge for this field will be to control total reaction yields more generally, such as in solution, but in such cases ... […]

via Google News and Bing News

Leave a Reply

%d bloggers like this: