Sep 142017
 

Illustration of an ATOMS microchip localized within the gastrointestinal tract. The chip, which works on principles similar to those used in MRI machines, is embodied with the properties of nuclear spin.
Credit: Ella Marushchenko for Caltech

Caltech researchers have developed microscale devices that relay their location in the body

Researchers at Caltech have developed a prototype miniature medical device that could ultimately be used in “smart pills” to diagnose and treat diseases. A key to the new technology—and what makes it unique among other microscale medical devices—is that its location can be precisely identified within the body, something that proved challenging before.

“The dream is that we will have microscale devices that are roaming our bodies and either diagnosing problems or fixing things,” says Azita Emami, the Andrew and Peggy Cherng Professor of Electrical Engineering and Medical Engineering and Heritage Medical Research Institute Investigator, who co-led the research along with Assistant Professor of Chemical Engineering and Heritage Medical Research Institute Investigator Mikhail Shapiro. “Before now, one of the challenges was that it was hard to tell where they are in the body.”

A paper describing the new device appears in the September issue of the journal Nature Biomedical Engineering. The lead author is Manuel Monge (MS ’10, PhD ’17), who was a doctoral student in Emami’s lab and a Rosen Bioengineering Center Scholar at Caltech, and now works at a company called Neuralink. Audrey Lee-Gosselin, a research technician in Shapiro’s lab, is also an author.

Called ATOMS, which is short for addressable transmitters operated as magnetic spins, the new silicon-chip devices borrow from the principles of magnetic resonance imaging (MRI), in which the location of atoms in a patient’s body is determined using magnetic fields. The microdevices would also be located in the body using magnetic fields—but rather than relying on the body’s atoms, the chips contain a set of integrated sensors, resonators, and wireless transmission technology that would allow them to mimic the magnetic resonance properties of atoms.

“A key principle of MRI is that a magnetic field gradient causes atoms at two different locations to resonate at two different frequencies, making it easy to tell where they are,” says Shapiro. “We wanted to embody this elegant principle in a compact integrated circuit. The ATOMS devices also resonate at different frequencies depending on where they are in a magnetic field.”

“We wanted to make this chip very small with low power consumption, and that comes with a lot of engineering challenges,” says Emami. “We had to carefully balance the size of the device with how much power it consumes and how well its location can be pinpointed.”

The researchers say the devices are still preliminary but could one day serve as miniature robotic wardens of our bodies, monitoring a patient’s gastrointestinal tract, blood, or brain. The devices could measure factors that indicate the health of a patient—such as pH, temperature, pressure, sugar concentrations—and relay that information to doctors. Or, the devices could even be instructed to release drugs.

“You could have dozens of microscale devices traveling around the body taking measurements or intervening in disease. These devices can all be identical, but the ATOMS devices would allow you to know where they all are and talk to all of them at once,” says Shapiro. He compares it to the 1966 sci-fi movie Fantastic Voyage,in which a submarine and its crew are shrunk to microscopic size and injected into the bloodstream of a patient to heal him from the inside—but, as Shapiro says, “instead of sending a single submarine, you could send a flotilla.”

The idea for ATOMS came about at a dinner party. Shapiro and Emami were discussing their respective fields—Shapiro engineers cells for medical imaging techniques, such as MRI, and Emami creates microchips for medical sensing and performing actions in the body—when they got the idea of combining their interests into a new device. They knew that locating microdevices in the body was a long-standing challenge in the field and realized that combining Shapiro’s knowledge in MRI technology with Emami’s expertise in creating microdevices could potentially solve the problem. Monge was enlisted to help realize the idea in the form of a silicon chip.

“This chip is totally unique: there are no other chips that operate on these principles,” says Monge. “Integrating all of the components together in a very small device while keeping the power low was a big task.” Monge did this research as part of his PhD thesis, which was recently honored with the Charles Wilts Prize by Caltech’s Department of Electrical Engineering.

The final prototype chip, which was tested and proven to work in mice, has a surface area of 1.4 square millimeters, 250 times smaller than a penny. It contains a magnetic field sensor, integrated antennas, a wireless powering device, and a circuit that adjusts its radio frequency signal based on the magnetic field strength to wirelessly relay the chip’s location.

“In conventional MRI, all of these features are intrinsically found in atoms,” says Monge. “We had to create an architecture that functionally mimics them for our chip.”

Learn more: Medicine of the Future: New Microchip Technology Could Be Used to Track Smart Pills

 

The Latest on: Microscale medical devices
  • Nano/micro 3-D printing is capable of generating complex, minute components.
    on January 12, 2018 at 1:16 am

    BMF uses a technique called Pulse (Projection Micro Litho Stereo Exposure), which is similar to the method utilized in a microscale video display device ... required by industry segments such as medical devices. “BMF’s 3-D printing system can reach ... […]

  • Why swallowable robots could be the future of healthcare
    on October 13, 2017 at 4:30 am

    Video: DoD agency funding nanotech brain chip research that could be medical game changer Three years ago ... often it's not. If a microscale device could be used to make sure that the drug could be delivered to the problem area, and only that area ... […]

  • Researcher develops flexible glass for tiny medical devices
    on March 24, 2017 at 11:16 am

    The scientists have added a new level of flexibility to the microscopic world of medical devices ... While current lab-on-a-chip membrane devices effectively function on the microscale, the new research, published in the journal Applied Physics Letters ... […]

  • Flexible glass for tiny medical devices developed
    on March 24, 2017 at 4:12 am

    New York, March 24 (IANS) Researchers have found a way to make the normally brittle material of glass bend and flex, adding a new level of flexibility to the microscopic world of medical ... membrane devices effectively function on the microscale, the ... […]

  • Microscale energy storage devices advance wearables
    on December 1, 2016 at 12:52 am

    Examples of application include self-powered sensors for wearables, security devices, and medical devices aimed at structural health monitoring. Further initiatives are underway to improve the operation of the microsupercapacitors. This involves integrated ... […]

  • Tiny transistors for extreme environs
    on March 20, 2014 at 5:54 am

    medical instruments and certain displays under direct sunlight (but not plasma TVs, which are different). These microscale devices are about 500 microns long, or roughly the width of five human hairs. They operate at more than 300 volts, requiring special ... […]

  • Manufacturing Microscale Medical Devices for Faster Tissue Engineering
    on November 1, 2011 at 5:00 pm

    WASHINGTON--(BUSINESS WIRE)--In the emerging field of tissue engineering, scientists encourage cells to grow on carefully designed support scaffolds. The ultimate goal is to create living structures that might one day be used to replace lost or damaged ... […]

via Google News and Bing News

Other Interesting Posts

Leave a Reply

%d bloggers like this: