Jun 202017

This futuristic drawing shows programmable nanophotonic processors integrated on a printed circuit board and carrying out deep learning computing.
Image: RedCube Inc., and courtesy of the researchers

Neural networks could be implemented more quickly using new photonic technology

“Deep learning” computer systems, based on artificial neural networks that mimic the way the brain learns from an accumulation of examples, have become a hot topic in computer science. In addition to enabling technologies such as face- and voice-recognition software, these systems could scour vast amounts of medical data to find patterns that could be useful diagnostically, or scan chemical formulas for possible new pharmaceuticals.

But the computations these systems must carry out are highly complex and demanding, even for the most powerful computers.

Now, a team of researchers at MIT and elsewhere has developed a new approach to such computations, using light instead of electricity, which they say could vastly improve the speed and efficiency of certain deep learning computations. Their results appear today in the journal Nature Photonics in a paper by MIT postdoc Yichen Shen, graduate student Nicholas Harris, professors Marin Solja?i? and Dirk Englund, and eight others.

Solja?i? says that many researchers over the years have made claims about optics-based computers, but that “people dramatically over-promised, and it backfired.” While many proposed uses of such photonic computers turned out not to be practical, a light-based neural-network system developed by this team “may be applicable for deep-learning for some applications,” he says.

Traditional computer architectures are not very efficient when it comes to the kinds of calculations needed for certain important neural-network tasks. Such tasks typically involve repeated multiplications of matrices, which can be very computationally intensive in conventional CPU or GPU chips.

After years of research, the MIT team has come up with a way of performing these operations optically instead. “This chip, once you tune it, can carry out matrix multiplication with, in principle, zero energy, almost instantly,” Solja?i? says. “We’ve demonstrated the crucial building blocks but not yet the full system.”

By way of analogy, Solja?i? points out that even an ordinary eyeglass lens carries out a complex calculation (the so-called Fourier transform) on the light waves that pass through it. The way light beams carry out computations in the new photonic chips is far more general but has a similar underlying principle. The new approach uses multiple light beams directed in such a way that their waves interact with each other, producing interference patterns that convey the result of the intended operation. The resulting device is something the researchers call a programmable nanophotonic processor.

The result, Shen says, is that the optical chips using this architecture could, in principle, carry out calculations performed in typical artificial intelligence algorithms much faster and using less than one-thousandth as much energy per operation as conventional electronic chips. “The natural advantage of using light to do matrix multiplication plays a big part in the speed up and power savings, because dense matrix multiplications are the most power hungry and time consuming part in AI algorithms” he says.

The new programmable nanophotonic processor, which was developed in the Englund lab by Harris and collaborators, uses an array of waveguides that are interconnected in a way that can be modified as needed, programming that set of beams for a specific computation. “You can program in any matrix operation,” Harris says. The processor guides light through a series of coupled photonic waveguides. The team’s full proposal calls for interleaved layers of devices that apply an operation called a nonlinear activation function, in analogy with the operation of neurons in the brain.

To demonstrate the concept, the team set the programmable nanophotonic processor to implement a neural network that recognizes four basic vowel sounds. Even with this rudimentary system, they were able to achieve a 77 percent accuracy level, compared to about 90 percent for conventional systems. There are “no substantial obstacles” to scaling up the system for greater accuracy, Solja?i? says.

Englund adds that the programmable nanophotonic processor could have other applications as well, including signal processing for data transmission. “High-speed analog signal processing is something this could manage” faster than other approaches that first convert the signal to digital form, since light is an inherently analog medium. “This approach could do processing directly in the analog domain,” he says.

The team says it will still take a lot more effort and time to make this system useful; however, once the system is scaled up and fully functioning, it can find many user cases, such as data centers or security systems. The system could also be a boon for self-driving cars or drones, says Harris, or “whenever you need to do a lot of computation but you don’t have a lot of power or time.”

Learn more: New system allows optical “deep learning”


The Latest on: Neural networks
  • New Chip Reduces Neural Networks' Power Consumption by Up To 95 Percent
    on February 20, 2018 at 11:57 am

    Most recent advances in artificial-intelligence systems such as speech- or face-recognition programs have come courtesy of neural networks, densely interconnected meshes of simple information processors that learn to perform tasks by analyzing huge sets of ... […]

  • Google's neural networks detect heart attack risk by looking at patients' eyes
    on February 19, 2018 at 11:40 pm

    The algorithms didn't outperform existing medical approaches such as blood tests, according to a study of the finding published in the journal Nature Biomedical Engineering. The work needs to be validated and repeated on more people before it gains broader ... […]

  • “Neural network” robot lawyer plots international expansion
    on February 19, 2018 at 2:37 am

    An online legal advice website has created an artificial intelligence-backed (AI) robot that it claims has been trained to answer natural language questions on consumer rights law using one of the world’s largest law Q&A datasets. Currently based in ... […]

  • MIT's neural network chip can reduce device power consumption by 95 per cent
    on February 18, 2018 at 6:18 pm

    HIGH-TECH INSTITUTION MIT has developed a neural network chip that could reduce the power consumption of devices by a whopping 95 per cent. Ideal for battery-powered gadgets to take advantage of more complex neural networking systems, MIT said the chip ... […]

  • Building deep learning neural networks using TensorFlow layers
    on February 18, 2018 at 8:44 am

    Deep learning has proven its effectiveness in many fields, such as computer vision, natural language processing (NLP), text translation, or speech to text. It takes its name from the high number of layers used to build the neural network performing machine ... […]

  • MIT Neural Network Processor Cuts Power Consumption by 95 Percent
    on February 15, 2018 at 3:30 am

    Neural network processing and AI workloads are both hot topics these days, driving multiple companies to announce their own custom silicon designs or to plug their own hardware as a top-end solution for these workloads. But one problem with neural networks ... […]

  • Programmable Networks Train Neural Nets Faster
    on February 14, 2018 at 1:28 pm

    When it comes to machine learning training, people tend to focus on the compute. We always want to know if the training is being done on specialized parallel X86 devices, like Intel’s Xeon Phi, or on massively parallel GPU devices, like Nvidia’s ... […]

  • From “Fancy My Hero” to “Tweet up Bat,” This Neural Network Wrote the Only Candy Heart Messages Fit for 2018
    on February 14, 2018 at 8:13 am

    Researcher Janelle Shane, whose work with neural networks we’ve covered before, is at it again. This time, she tried to train a neural network to create its own candy heart messages. “I collected all the genuine heart messages I could find,” she ... […]

  • This neural network wants to be your Valentine… we think
    on February 12, 2018 at 12:23 pm

    Research scientist Janelle Shane came up with a novel way to woo your tech-savvy partner this Valentine’s Day. Shane collected all the phrases from the popular Valentine’s heart candy — the one with messages like “Love You” or “Be Mine ... […]

via Google News and Bing News

Other Interesting Posts

Leave a Reply

%d bloggers like this: