Jun 192017
 

Iron based sculpture by Portuguese Artist Rui Chafes “Extinguish my eyes” (2005)”.

Sepsis is a major global healthcare problem that affects over 18 million individuals per year, every single year, corresponding to 1,400 deaths per day. In Europe and the US alone, there are an estimated 135,000 and 215,000 causalities and €7.6 and €17.4 billion related treating costs, respectively.

Using experimental models of sepsis in mice the research team led by Miguel Soares at the Instituto Gulbenkian de Ciência in Portugal discovered an unsuspected mechanism that is protective against sepsis. This study that provides new avenues for therapeutic approaches against sepsis appears in the June 15 issue of the prestigious scientific journal Cell*.

Despite being more common than heart attack and more lethal than cancer, the large majority people do not really know what sepsis is. Briefly, it consists of an uncontrolled body’s response to an infection that is spreading towards different parts of the body, also know as a systemic infection. The immune system of the infected individual does try to kill the microbes responsible for the infection, and in many cases manages to do so, but in the process causes profound alterations in the normal functioning of vital organs, such as, the brain, heart, liver, kidney or lungs. In more severe cases blood pressure also drops and those organs ultimately stop functioning properly and as a result the patient dies.

It is well know that sepsis patients vary in their response to infection and disease severity, depending on the type of infection as well as on their genetic characteristics, coexisting illnesses and age. A long lasting unsolved mystery relates to why despite an effective control of the infectious microorganisms by the use antibiotics, some patients succumb while others recover from the infection. Over the past five years the research team led by Miguel Soares has put forward the concept that those individuals that do not succumb to sepsis develop a protective response that maintains the function of vital organs, conferring disease tolerance to the infection. Using experimental models of sepsis in mice they now discovered a mechanism that is vital to confer disease tolerance to sepsis.

“We knew that a key element to promote disease tolerance to infection is how the levels of iron are controlled in different tissues while other colleagues had shown that the pathogenesis of sepsis is associated with deregulation of glucose (sugar) metabolism. What we found is that these two phenomena are intimately linked in that controlling iron metabolism is required to sustain the production of glucose in the liver so that glucose can be used as a vital source of energy by other organs”, says Miguel Soares.

Sebastian Weis a Medical Doctor doing is post-doctoral training with Miguel Soares induced sepsis in laboratory mice and compared how disease progresses in mice that express or not ferritin, a protein that controls iron in the liver. He found that ferritin is absolutely required for the liver to produce glucose after an infection and hence to protect mice from succumbing to sepsis.

“Typically in mice, after infection, there is an increase of blood glucose levels followed by a quick drop, which can become lethal. In humans with infectious disease this also occurs in a subset of patients and is know to lead to higher death rates. Our results showed that ferritin controls glucose production in the liver so that blood glucose levels are maintained within a range that allows survival. Without ferritin, the glucose levels continued to drop and mice eventually die from sepsis”, explains Sebastian Weis, co-first author of the manuscript and currently a researcher and clinician at the Jena University Hospital, Germany, where part of the experiments were conducted.”

Another key piece of this puzzle was provided by Ana Rita Carlos, a PhD working as a post-doctoral fellow with Miguel Soares. She found that the reason why ferritin is required for the liver to produce glucose relies on a molecular mechanism that controls the expression of one of the key genes involved in this process, known as glucose 6 phosphatase. When ferritin is absent, iron deregulates the expression of Glucose 6 phosphatase and the liver loses its capacity to secrete glucose. When this occurs, glucose cannot be delivered and used by other vital organs as a source of energy. This is required to maintain the function of those organs in response to infection and as such to prevent the development of lethal forms of sepsis. This protective mechanism does no influence the microorganisms that are the underlying cause of the disease and as such is said to confer disease tolerance to sepsis.

“It is very interesting that while essential to support many vital cellular functions iron must be tightly controlled in the liver so that it cannot interfere with the production of glucose. The molecular mechanism via which this occurs relies on the expression of ferritin, a protein complex that binds iron and devoid iron from interfering with glucose production” explains Ana Rita Carlos, also a co-first author of the manuscript.

“This is a great example on how basic research conducted in a multidisciplinary environment such as the one provided by the Instituto Gulbenkian de Ciência, without an immediate commercial interest, can have a global impact on the treatment of a major disease that affects over 18 million individuals per year worldwide. Our mission is to make discoveries so that these can be eventually translated into treatments of major diseases”. says Miguel Soares.

Learn more: A Rusty and Sweet Side of Sepsis

 

The Latest on: Sepsis
  • How nurses are fighting the war against sepsis
    on June 21, 2017 at 11:47 pm

    Dawn Nagel, a nurse at St. Joseph Hospital in Orange, Calif., knew she was going to have a busy day, with more than a dozen patients showing signs of sepsis. They included a 61-year-old mechanic with diabetes. An elderly man recovering from pneumonia. […]

  • A new front in the war on sepsis
    on June 21, 2017 at 6:14 pm

    Dawn Nagel checks up on patient Scott Steffens, 67, at St. Joseph Hoag Health in Orange. Nagel informed Steffens he needs to be treated for sepsis. Heidi de Marco/Kaiser Health News Dawn Nagel, a nurse at St. Joseph Hospital in Orange, knew she was going ... […]

  • The New War On Sepsis
    on June 21, 2017 at 3:46 pm

    Dawn Nagel checks up on patient Scott Steffens, 67, at St. Joseph Hoag Health in Orange County, Calif., in April. Nagel informed Steffens he needed to be treated for sepsis. (Heidi de Marco/KHN) Dawn Nagel, a nurse at St. Joseph Hospital in Orange, Calif. […]

  • GBS Sepsis: A ‘Don’t Miss’ Diagnosis
    on June 21, 2017 at 9:26 am

    Early-onset sepsis in a newborn is one of those challenging clinical entities—it is a critical diagnosis that you certainly don’t want to miss, but it’s also a disease process with signs and symptoms that may be subtle or nonspecific. As a ... […]

  • Sepsis Diagnostics Market driven by rising prevalence of different antibiotic resistant bacterial strains
    on June 21, 2017 at 5:57 am

    Sepsis can be defined as the body’s reaction to the fungal, bacterial, viral, or parasitic infection, which may further lead to systemic inflammatory reaction and organ dysfunction or organ failure. Depending on severity of infection, sepsis is ... […]

  • Pediatric Sepsis ID Improves With Electronic Alert
    on June 20, 2017 at 4:39 pm

    An electronic alert decreased missed cases of sepsis in a pediatric emergency department (ED), but did not completely replace frequent assessments by physicians, a new study at Children's Hospital of Philadelphia has found. The researchers published their ... […]

  • Bacterial Sepsis Market Analysis, Size, Share, Growth and Trends 2017
    on June 16, 2017 at 2:00 am

    GlobalData’s clinical trial report, “Bacterial Sepsis Global Clinical Trials Review, H1, 2017” provides an overview of Bacterial Sepsis clinical trials scenario. This report provides top line data relating to the clinical trials on Bacterial Sepsis. […]

  • A rusty and sweet side of sepsis
    on June 15, 2017 at 12:13 pm

    Sepsis is a major global healthcare problem that affects over 18 million individuals per year, every single year, corresponding to 1,400 deaths per day. In Europe and the US alone, there are an estimated 135,000 and 215,000 causalities and €7.6 and €17 ... […]

  • North Texas FD Carrying Lifesaving Meds To Battle Sepsis
    on June 13, 2017 at 3:12 pm

    NORTH RICHLAND HILLS (CBS11) – It’s more common than heart attacks and claims more lives than any cancer. Sepsis can cause vital organs to shut to down. But now a North Texas fire department is the first in the country to carry life saving antibiotics ... […]

  • Texas firefighters first in nation to carry drugs to combat sepsis
    on June 13, 2017 at 9:44 am

    It's more common than heart attacks and claims more lives than any cancer. Sepsis can cause vital organs to shut to down. But now a North Texas fire department is the first in the country to carry life-saving antibiotics to combat it, CBS DFW reports. […]

via Google News and Bing News

Other Interesting Posts

Leave a Reply

%d bloggers like this: