Jun 192017
 

{Image by IlluScientia for University of Grenoble Alpes depicts the atomic structure of a Bdf1 bromodomain bound to a chemical compound that blocks growth of the fungal infection, Candida albicans.}

Deadly fungal infections are becoming resistant to common treatments, but a team of researchers from USC and from France have found a potential innovative solution.

Each year, invasive fungal infections sicken an estimated 2 million people worldwide and kill nearly 800,000 – but a team of international scientists have discovered a new approach for antifungal drug treatments.

Researchers from USC and France identified that a gene-regulating protein, Bdf1, is critical for the survival of the pathogenic fungus, Candida albicans.

“We have shown that Bdf1 is an important new target for drug design,” said Charles McKenna, a senior author of the study who is a professor of chemistry and pharmaceutical sciences in the USC Dornsife College of Letters, Arts and Sciences. “Our findings show that compounds that bind to this target will disrupt the growth of the fungus, opening the way to novel drug treatments for fungal disease.”

The French scientists who led the study with McKenna were Jérôme Govin and Carlo Petosa, both at the University of Grenoble Alpes.

 

Rising health threat 
The fungus, C. albicans, is an aggressive pathogen that in healthy individuals is normally held in check by the immune system. However, people with a weakened immune system, including patients who have cancer, HIV or autoimmune diseases, are susceptible to the infection, which can be life-threatening, McKenna said.

The team’s findings, published on May 18 in the journal Nature Communications, may prove timely. Fungal infections such as candidiasis are increasingly resistant to drug treatments.

Each year, an estimated 46,000 patients in the United States become infected with invasive candidiasis, according to the Centers for Disease Control and Prevention.

“When susceptible people develop candida infections, the fungus may enter the bloodstream. If treatment is unsuccessful, it has a very high mortality rate – in the 40 percent range,” McKenna said. “We have a very limited number of drugs that are effective in treating such systemic infections. Unfortunately, like many other pathogens, C. albicans is increasingly resistant to the few available drugs, raising the stakes for patients, and fresh approaches are urgently needed.”

Learn more: Blocking gene expression to combat deadly fungal infection

 

The Latest on: Antifungal drug treatments

via Google News and Bing News

Other Interesting Posts

Leave a Reply

%d bloggers like this: