May 312017
 

Rod-like cellulose nanocrystals (CNC) approximately 120 nanometers long and 6.5 nanometers in diameter under the microscope. (Image: Empa)

Empa researchers have succeeded in developing an environmentally friendly ink for 3D printing based on cellulose nanocrystals. This technology can be used to fabricate microstructures with outstanding mechanical properties, which have promising potential uses in implants and other biomedical applications.

In order to produce 3D microstructured materials for composite applications, for instance, Empa researchers have been using a 3D printing method called “Direct Ink Writing” for the past year (DIW, see box). During this process, a viscous substance – the printing ink – is squeezed out of the printing nozzles and deposited onto a surface, pretty much like a pasta machine. Empa researchers Gilberto Siqueira and Tanja Zimmermann from the Laboratory for Applied Wood Materials have now succeeded, together with colleagues from Harvard University and ETH Zürich, in developing a new, environmentally friendly 3D printing ink made from cellulose nanocrystals (CNC).

Cellulose, along with lignin and hemicellulose, is one of the main constituents of wood. The biopolymer consists of glucose chains organized in long fibrous structures. In some places the cellulose fibrils exhibit a more ordered structure. “The places with a higher degree of order appear in a more crystalline form. And it is these sections, which we can purify with acid, that we require for our research”, explains Siqueira. The final product is cellulose nanocrystals, tiny rod-like structures that are 120 nanometers long and have a diameter of 6.5 nanometers. And it is these nanocrystals that researchers wanted to use to create a new type of environmentally friendly 3D printing ink. Previous inks contained a rather small proportion of “biological” materials, with a maximum of 2.5 percent CNC. The Empa team wished to increase this proportion, as they have now succeeded in doing – their new inks contain a full 20 percent CNC.

“The biggest challenge was in attaining a viscous elastic consistency that could also be squeezed through the 3D printer nozzles”, says Siqueira. The ink must be “thick” enough so that the printed material stays “in shape” before drying or hardening, and doesn’t immediately melt out of shape again. The first CNC mixtures were water-based. This did work in principle, but yielded a very brittle material. Therefore, Siqueira and his colleagues developed a second, polymer-based recipe that had a decisive advantage: after printing and hardening using UV radiation, the CNC “cross-linked” with polymer building blocks, which gave the composite material a significantly higher degree of mechanical rigidity.

Bringing things together despite resistance

What sounds quite simple in retrospect caused the Empa team a great deal of head-scratching. Siqueira: “Most polymers are water-repellent or hydrophobic, whereas cellulose attracts water – it is hydrophilic. As a result they are not very compatible.” So the researchers first of all had to chemically modify the CNC surface.

After the first attempts at printing and X-ray analysis of the obtained microstructures, the researchers noticed that the CNC in the printed object had aligned itself almost perfectly in the direction it was printed in. They concluded that the mechanical strength used to push the ink through the printing nozzle was sufficient to align it. “It is pretty interesting that one can so easily control the direction of the nanocrystals, for example, if you want to print something that should have a specific mechanical rigidity in a certain direction”, says Siqueira.

Lots and lots of possibilities
/documents/56164/1188172/cellulose+ink+jaw.jpg/4d8a7e86-54df-4cbf-97cc-ced2256d263d?t=1496067437647
A jaw bone printed with the cellulose ink – the outstanding mechanical properties have promising potential uses in implants and other biomedical applications

These outstanding mechanical properties represent a decisive advantage compared to other materials such as carbon fibers, which are also used in DIW inks. In addition, the new kind of ink from the Empa lab is made from a renewable material – cellulose. “Cellulose is the most frequently occurring natural polymer on Earth”, says Siqueira. It is not just found in trees, but also in other plants and even in bacteria. The crystals, which are isolated from various cellulose sources, are morphologically different from each other and differ in size, but not in their properties. And they may also be of interest to, for example, the automobile industry or for packaging of any kind. “However, the most important area of application for me is in biomedicine”, says Siqueira, “for example in implants or prostheses”. The Empa researcher is convinced that the CNC material is suitable for a wide variety of different applications due to its outstanding mechanical properties, as well as the possibility of chemical modification and alignment during printing.

These possibilities are currently being investigated further at Empa. A PhD student is currently focusing on the further development of the materials and the printing method for other applications. In addition, a Master’s student intends to develop other “biological” inks. “Research in this field is only just beginning”, says Gilberto Siqueira. “Printing with biopolymers is currently a very hot topic.”

Learn more:3D printer inks from the woods

 

The Latest on: 3D printer ink
  • Black Phosphorus Ink Compatible with Inkjet Printers Developed
    on November 20, 2017 at 10:29 am

    There may even be implications for 3D printing, according to Tawfique. "The thin-form factors and mechanical flexibility of the inkjet-printed BP may enable direct integration with functional 3D printing for improved device performance and even new ... […]

  • HP and Seiko Epson's DNA and the Evolution of 2D Printing to 3D Printing
    on November 18, 2017 at 11:44 am

    In the industrial commercial space, the major new 3D printer business opportunities appear to be metals where the raw material is metal powder as opposed to ink and liquids. The conversion process from 2D to 3D has just begun for HP and Seiko Epson ... […]

  • 3D printing news Sliced, NASA, Carbon, Ultimaker and Sinterit
    on November 17, 2017 at 11:42 am

    After a BN/PVA ink was prepared, it was 3D printed using a Fisnar F4200n 3D printer into a methanol bath before being dried into fibres. The results of the study show that the cooling effect of a-BN/PVA fabric is 55% higher than that of commercial cotton ... […]

  • Arconic (ARNC) and Airbus Ink Aerospace 3D-Printing Deal
    on November 16, 2017 at 4:20 am

    Arconic Inc. ARNC entered into a multi-year cooperative research deal with Airbus to advance metal 3D printing for aircraft manufacturing. The deal combines Arconic's expertise in metal additive production and metallurgy with Airbus's qualification and ... […]

  • Working Electronic Circuits 3D-Printed With UV Light
    on November 15, 2017 at 3:30 am

    This version of additive manufacturing is more like an inkjet printer than the molten plastic 3D printers with which you’re probably familiar. The circuits that come out of this newly designed process are fully functional, which means the printer has to ... […]

via Google News and Bing News

Leave a Reply

%d bloggers like this: