Apr 212017
 

A team of battery researchers led by Cengiz Ozkan, professor of mechanical engineering, and Mihri Ozkan, professor of electrical engineering at UC Riverside.

UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics

Researchers at the University of California, Riverside’s Bourns College of Engineering have used waste glass bottles and a low-cost chemical process to create nanosilicon anodes for high-performance lithium-ion batteries. The batteries will extend the range of electric vehicles and plug-in hybrid electric vehicles, and provide more power with fewer charges to personal electronics like cell phones and laptops.

Titled “Silicon Derived from Glass Bottles as Anode Materials for Lithium Ion Full Cell Batteries,” an article describing the research was published today in the Nature journal Scientific Reports. Cengiz Ozkan, professor of mechanical engineering, and Mihri Ozkan, professor of electrical engineering, led the project.

Even with today’s recycling programs, billions of glass bottles end up in landfills every year, prompting the researchers to ask whether silicon dioxide in waste beverage bottles could provide high purity silicon nanoparticles for lithium-ion batteries.

Silicon anodes can store up to 10 times more energy than conventional graphite anodes, but expansion and shrinkage during charge and discharge make them unstable. Downsizing silicon to the nanoscale has been shown to reduce this problem, and by combining an abundant and relatively pure form of silicon dioxide and a low-cost chemical reaction, the researchers created lithium-ion half-cell batteries that store almost four times more energy than conventional graphite anodes.

To create the anodes, the team used a three-step process that involved crushing and grinding the glass bottles into a fine white power, a magnesiothermic reduction to transform the silicon dioxide into nanostructured silicon, and coating the silicon nanoparticles with carbon to improve their stability and energy storage properties.

As expected, coin cell batteries made using the glass bottle-based silicon anodes greatly outperformed traditional batteries in laboratory tests. Carbon-coated glass derived-silicon ([email protected]) electrodes demonstrated excellent electrochemical performance with a capacity of ~1420 mAh/g at C/2 rate after 400 cycles.

Changling Li, a graduate student in materials science and engineering and lead author on the paper, said one glass bottle provides enough nanosilicon for hundreds of coin cell batteries or three-five pouch cell batteries.

“We started with a waste product that was headed for the landfill and created batteries that stored more energy, charged faster, and were more stable than commercial coin cell batteries. Hence, we have very promising candidates for next-generation lithium-ion batteries,” Li said.

An picture of the glass bottle and the anode material that is created from it.

Waste glass bottles are turned into nanosilicon anodes using a low cost chemical process.

This research is the latest in a series of projects led by Mihri and Cengiz Ozkan to create lithium-ion battery anodes from environmentally friendly materials. Previous research has focused on developing and testing anodes from portabella mushrooms, sand, and diatomaceous (fossil-rich) earth.

Learn more: Making Batteries From Waste Glass Bottles

The Latest on: Batteries
  • Something clever about batteries
    on April 27, 2017 at 4:28 pm

    There comes a point in every person's life when the TV remote control batteries need to be changed. You purchase a fresh pack at the grocery store and pop open the cover to take out the tiny energizers that have served your binge-watching needs valiantly. […]

  • Formula E Already Improving EV Batteries
    on April 27, 2017 at 3:44 pm

    “Racing improves the breed,” is one of the most time-honored phrases in motorsports. Many new ideas got tried on race cars first before they were incorporated into road cars — electronic fuel injection, disc brakes, overhead camshafts, to name just a ... […]

  • The U.S. Navy is designing safer batteries, because no one wants a fire at sea
    on April 27, 2017 at 3:07 pm

    Our smartphones and other gadgets are powered by lithium-ion batteries, but as companies like Samsung know all too well, those charge-holders can be flammable under the wrong conditions. The hazards of lithium-ion batteries are also a concern for another ... […]

  • Batteries, solar and the grid: An interview with Jenny Chase of BNEF
    on April 27, 2017 at 1:53 pm

    pv magazine: What are the big trends that you are seeing in the global solar market right now? Jenny Chase: Here’s a global trend in the energy market that is concerning me, and it is about the most fundamental that you can get. In most places you have ... […]

  • Breakthrough enables safer alternative to lithium-ion batteries
    on April 27, 2017 at 1:05 pm

    Researchers at the U.S. Naval Research Laboratory's (NRL) Chemistry Division have developed a safer alternative to fire-prone lithium-ion batteries, which were recently banned for some applications on Navy ships and other military platforms. Joseph Parker ... […]

via Google News and Bing News

Other Interesting Posts

Leave a Reply

%d bloggers like this: