Dec 132016
 

(A) Holding a coffee mug; (B and C) grasping a tomato with the palm facing down (B) and the palm facing up (C); (D) shaking a human hand; (E) lateral scanning over surfaces to?detect roughness and shape; and (F) probing the softness of a soft sponge using the waveguide sensor

Most robots achieve grasping and tactile sensing through motorized means, which can be excessively bulky and rigid. A Cornell University group has devised a way for a soft robot to feel its surroundings internally, in much the same way humans do.

A group led by Robert Shepherd, assistant professor of mechanical and aerospace engineering and principal investigator of Organic Robotics Lab, has published a paper describing how stretchable optical waveguides act as curvature, elongation and force sensors in a soft robotic hand.

Most robots achieve grasping and tactile sensing through motorized means, which can be excessively bulky and rigid. A Cornell University group has devised a way for a soft robot to feel its surroundings internally, in much the same way humans do.

A group led by Robert Shepherd, assistant professor of mechanical and aerospace engineering and principal investigator of Organic Robotics Lab, has published a paper describing how stretchable optical waveguides act as curvature, elongation and force sensors in a soft robotic hand.

Learn more: New robot has a human touch

 

Other Interesting Posts

Leave a Reply

%d bloggers like this: