Dec 112016
 

Old C. elegans expressing a specific alternative splicing event tagged by either green or red fluorescent protein, well-fed (left) or on dietary restriction (right). Worms on dietary restriction maintain a youthful splicing pattern (as seen in young worms) compared to the well-fed worm population at the same age.

Synopsis:

Uncovering a ‘smoking gun’ in age-related disease

Aging is a key risk factor for a variety of devastating, chronic diseases, yet the biological factors that influence when and how rapidly cells deteriorate over time remain largely unknown.

Now, for the first time, a research team led by Harvard T.H. Chan School of Public Health has linked the function of a core component of cells’ machinery – which cuts and rejoins RNA molecules in a process known as “RNA splicing” – with longevity in the roundworm.

The finding sheds light on the biological role of splicing in lifespan and suggests that manipulating specific splicing factors in humans might help promote healthy aging.

“What kills neurons in Alzheimer’s is certainly different from what causes cardiovascular disease, but the shared underlying risk factor for these illnesses is really age itself,” said William Mair, assistant professor of genetics and complex diseases at Harvard Chan School and the study’s senior author.

While a considerable amount is known about how dysfunction at the two ends of this process – genes and proteins – can accelerate aging, strikingly little is known about how the middle part, which includes RNA splicing, influences aging.

Splicing enables one gene to generate multiple proteins that can act in different ways and in disparate parts of the body.

“Although we know that specific splicing defects can lead to disease, we were really intrigued about de-regulation of RNA splicing as a driver of the aging process itself, because practically nothing is known about that,” said Mair.

“Put simply, splicing is a way for organisms to generate complexity from a relatively limited number of genes.”

So Mair and his colleagues, led by first author Caroline Heintz, designed a series of experiments in the roundworm Caenorhabditis elegans to probe the potential connections between splicing and aging.

“C. elegans is a great tool to study aging in because the worms only live for about three weeks, yet during that time they can show clear signs of age. For example, they lose muscle mass and experience declines in fertility as well as immune function. Their skin even wrinkles, too,” explained Heintz.

The worms also carry about the same total number of genes as humans and many of those genes are shared, evolutionarily speaking, between the two species, making C. elegans an ideal system in which to dissect the molecular biology of aging.

Notably, the worms’ cells are transparent, so Heintz and her colleagues harnessed fluorescent genetic tools to visualize the splicing of a single gene in real-time throughout the aging process.

Not only did the scientists observe variability on a population level – after five days, some worms showed a youthful pattern of splicing while others exhibited one indicative of premature aging – but they could also use these differences in splicing to predict individual worms’ lifespans prior to any overt signs of old age.

“This is a really interesting result, and suggests that we might someday be able to use splicing as a kind of biomarker or early signature of aging,” said Heintz.

Interestingly, when the team looked at worms treated in ways that increase lifespan, they found that the youthful splicing pattern was maintained throughout the worms’ lives.

The finding suggests that splicing could play a broad role in the aging process, both in worms as well as humans.

As they dug more deeply into the molecular links between splicing and aging, Heintz and her colleagues zeroed in on one particular component of the splicing apparatus in worms, called splicing factor 1 – a factor also present in humans.

In a series of experiments, the researchers demonstrate that this factor plays a key role in pathways related to aging.

“These are fascinating results, and suggest that variability in RNA splicing might be one of the smoking guns of the aging process,” said Mair.

Learn more: Uncovering a ‘smoking gun’ in age-related disease

 

The Latest on: RNA splicing and aging

Other Interesting Posts

Leave a Reply

%d bloggers like this: