Sep 142014
 
Electrical and Computer Engineering professor Stojan Radic in the Photonic Systems Laboratory of the Qualcomm Institute

Electrical and Computer Engineering professor Stojan Radic in the Photonic Systems Laboratory of the Qualcomm Institute

The work took nearly four years to complete and it opens a fundamentally new direction in photonics – with far-reaching potential consequences for the control of photons in optical fiber channels.

Researchers at the University of California, San Diego have built the first 500 Gigahertz (GHz) photon switch. “Our switch is more than an order of magnitude faster than any previously published result to date,” said UC San Diego electrical and computer engineering professor Stojan Radic. “That exceeds the speed of the fastest lightwave information channels in use today.”

According to an article in the journal Science*, switching photons at such high speeds was made possible by advances in the control of a strong optical beam using only a few photons, and by the scientists’ ability to engineer the optical fiber itself with accuracy down to the molecular level.

In the research paper, Radic and his colleagues in the UC San Diego Jacobs School of Engineering argue that ultrafast optical control is critical to applications that must manipulate light beyond the conventional electronic limits. In addition to very fast beam control and fast switching, the latest work opens the way to a new class of sensitive receivers (also capable of operating at very high rates), faster photon sensors, and optical processing devices.

Take me to the complete story . . .

 

The Latest on: Photonics

Other Interesting Posts

Leave a Reply

%d bloggers like this: