Nov 022013


It is time for computer designers to work smart instead of strong, which is just what Devadas is doing.

Computer scientists at MIT have developed a 110-core CPU chip based on a new architecture in which, instead of bringing data across the chip to the core that happens to want it, the program is moved to the core where the data is stored. In practice, this new architecture reduces the amount of on-chip data exchange tenfold, along with cutting the heat and infrastructure demanded by conventional chip architecture.

You may have noticed that the rapid progress of computing power has become a bit sluggish in the past decade or so. While Moore’s law is still intact, clock speeds have stalled at about 4 GHz, instead of the 50 GHz we would now have achieved based on historical rates of increase.

Multiple-core chips are commonly used to increase peak computing speeds, but run into problems with overheating as data is shuffled back and forth between the cores. MIT professor Srinivas Devadas offers a path to increased computing power by instead moving the program to a core having direct access to the required data.

The number of transistors (MOSFETs – Metal Oxide Silicon Field Effect Transistors) that can be integrated onto a single chip continues to double about every two years, as the feature size of lithographic process technology shrinks. However, Moore’s law, as this is called, is only one part of why computing power has grown so rapidly.

The other part is Dennard scaling, which describes how the performance of the MOSFETs scale with decreasing feature size.

Read more . . .


The Latest on: CPU chip architecture

Other Interesting Posts

Leave a Reply

%d bloggers like this: