Nov 152013
 

3500079579_671206cd4c_m

Software that can recognize patterns in data is commonly used by scientists and economics.

Now, researchers in the US have applied similar algorithms to help them more accurately diagnose breast cancer. The researchers outline details in the International Journal of Medical Engineering and Informatics.

Duo Zhou a biostatistician at pharmaceutical company Pfizer in New York and colleagues Dinesh Mital and Shankar Srinivasan of the University of Medicine and Dentistry of New Jersey, point out that data pattern recognition is widely used in machine-learning applications in science. Computer algorithms trained on historical data can be used to analyze current information and detect patterns and then predict possible future patterns. However, this powerful knowledge discovery technology is little used in medicine.

The team suggested that just such an automated statistical analysis methodology might readily be adapted to a clinical setting. They have done just that in using an algorithmic approach to analyzing data from breast cancer screening to more precisely recognize the presence of malignant tumors in breast tissue as opposed to benign growths or calcium deposits. This could help improve outcomes for patients with malignancy but also reduce the number of false positives that otherwise lead patients to unnecessary therapeutic, chemotherapy or radiotherapy, and surgical interventions.

Read more . . .

 

The Latest on: Diagnose breast cancer

Other Interesting Posts

Leave a Reply

%d bloggers like this: