Oct 172013
 

13147-coral_news

Camera-equipped flying robots promise new insights into climate change effects on important ecosystems.

Like undiscovered groves of giant redwoods, centuries-old living corals remain unmapped and unmeasured. Scientists still know relatively little about the world’s biggest corals, where they are and how long they have lived.

The secret to unlocking these mysteries may lie with a shoebox-size flying robot.

The robot in question is a four-rotor remote-controlled drone developed by Stanford aeronautics graduate student Ved Chirayath. The drone is outfitted with cameras that can film coral reefs from up to 200 feet in the air. Chirayath teamed up with Stanford Woods Institute Senior Fellow Stephen Palumbi to pioneer the use of drone technology to precisely map, measure and study shallow-water reefs off Ofu Island in American Samoa.

“Until now the challenges have been too high for flying platforms like planes, balloons and kites,” Palumbi said. “Now send in the drones.”

Chirayath, who also works as a scientist at NASA’s Ames Research Center, analyzes the drone’s footage using software he designed. The software removes distortions caused by surface wave movements and enhances resolution. To link the drone aerial footage to close-up images of corals, Chirayath and his colleagues are photographing reefs from below the water using a 360-degree camera. The result is a centimeter-scale optical aerial map and stunning gigapixel panoramic photographs of coral heads that stitch together thousands of images into one.

 Surveys and maps of rainforests have resulted in new understanding of the vital role these ecosystems play in sustaining the biosphere. Detailed coral maps could do the same, allowing scientists to conduct precise species population surveys over large areas and assess the impact of climate change.

The window of time to study these mysterious ecosystems, which provide sustenance and livelihoods to a billion people, may be closing. Pollution, destructive fishing practices and climate change impacts such as warmer, more acidic ocean water threaten corals and their role as habitat for about a quarter of all ocean species.

Scientists have long endeavored to make coral reef maps. However, standard underwater approaches such as hand-drawing maps, measuring out quadrants and taking photographs are hugely time-and-labor intensive, and often inaccurate. Satellite imagery through water tends to be distorted by wave movement. Radar can’t penetrate the water’s surface, and sonar doesn’t work well in the shallow water where most corals reside. That’s where drones and Chirayath’s software come in.

When Chirayath first developed his optical software, called Fluid Lensing, NASA hired the young engineer to develop a satellite concept that would image targets such as vegetation and ocean flows on Earth, as well as targets in space. Soon, Chirayath began to think about other applications for the software. After learning about widespread coral bleaching and a lack of accurate reef maps, he dreamed up a camera-equipped drone to do the job.

“I was inspired by the way the human eye works in conjunction with the brain to try to resolve an obscured image,” Chirayath said. He compared his drone-captured coral images to sketchbook pictures of a person behind a waterfall. The person’s face would be heavily distorted in a photograph, but a patient sketch artist could draw the face clearly over time. “It’s an ability to rapidly assimilate a vast amount of data and, in effect, see through strong optical distortions.”

Word of Chirayath’s Fluid Lensing experiments in water tanks at the Monterey Bay Aquarium spread quickly to Palumbi, a professor of marine sciences and director of Stanford’s nearby Hopkins Marine Station. Palumbi invited Chirayath to join him on a research trip to Ofu.

“The lensing takes a huge problem in looking through the surface of the water and turns it into an advantage,” Palumbi said. “It not only removes the ripples but uses their magnification to enhance the image.”

Read more . . .

 

The Latest on: Coral research
  • World’s northernmost coral reef in Japan bleached, research finds
    on July 18, 2017 at 4:49 pm

    Healthy coral reefs protect shores from storms and offer habitats for fish and other marine life, including ecologically and economically important species. After coral dies, reefs quickly degrade and the structures that coral build erode. While coral can ... […]

  • Oil Impairs Ability of Coral Reef Fish to Find Homes and Evade Predators
    on July 17, 2017 at 9:28 am

    Oil concentrations are found in oceans worldwide, but until now little has been known about the impact of oil exposure on coral reef fish. Earlier research that explored how oil affects the physiology of fishes has demonstrated developmental heart ... […]

  • Researcher makes deep-sea coral reefs discovery in depths of the North-Pacific
    on July 14, 2017 at 2:43 pm

    In addition, North Pacific carbonate dissolution rates, a measure of the pace at which carbonate substances like coral skeletons dissolve ... is next to a submersible in which she has conducted research. Credit: Florida State University "Even if the ... […]

  • Mote Study Finds Ocean Acidification Can Slow Coral Disease
    on July 14, 2017 at 9:54 am

    Erinn Muller, Ph.D., is the lead author of the report and Manager of Mote’s Coral Health and Disease Research Program. She said black band can kill off several hundred year-old corals in just a matter of weeks given that some coral species like brain ... […]

  • Botanists discover hundreds of species of fungi in deep coral ecosystems
    on July 11, 2017 at 1:00 am

    Mesophotic coral ecosystems (MCE) are generally found at depths between ... yielding species and behavioral interactions new to science. The UHM Hawai'i Undersea Research Laboratory (HURL) used the Pisces V submersible to collect native algae from the ... […]

via Google News and Bing News

Other Interesting Posts

Leave a Reply

%d bloggers like this: