Oct 172013


Camera-equipped flying robots promise new insights into climate change effects on important ecosystems.

Like undiscovered groves of giant redwoods, centuries-old living corals remain unmapped and unmeasured. Scientists still know relatively little about the world’s biggest corals, where they are and how long they have lived.

The secret to unlocking these mysteries may lie with a shoebox-size flying robot.

The robot in question is a four-rotor remote-controlled drone developed by Stanford aeronautics graduate student Ved Chirayath. The drone is outfitted with cameras that can film coral reefs from up to 200 feet in the air. Chirayath teamed up with Stanford Woods Institute Senior Fellow Stephen Palumbi to pioneer the use of drone technology to precisely map, measure and study shallow-water reefs off Ofu Island in American Samoa.

“Until now the challenges have been too high for flying platforms like planes, balloons and kites,” Palumbi said. “Now send in the drones.”

Chirayath, who also works as a scientist at NASA’s Ames Research Center, analyzes the drone’s footage using software he designed. The software removes distortions caused by surface wave movements and enhances resolution. To link the drone aerial footage to close-up images of corals, Chirayath and his colleagues are photographing reefs from below the water using a 360-degree camera. The result is a centimeter-scale optical aerial map and stunning gigapixel panoramic photographs of coral heads that stitch together thousands of images into one.

 Surveys and maps of rainforests have resulted in new understanding of the vital role these ecosystems play in sustaining the biosphere. Detailed coral maps could do the same, allowing scientists to conduct precise species population surveys over large areas and assess the impact of climate change.

The window of time to study these mysterious ecosystems, which provide sustenance and livelihoods to a billion people, may be closing. Pollution, destructive fishing practices and climate change impacts such as warmer, more acidic ocean water threaten corals and their role as habitat for about a quarter of all ocean species.

Scientists have long endeavored to make coral reef maps. However, standard underwater approaches such as hand-drawing maps, measuring out quadrants and taking photographs are hugely time-and-labor intensive, and often inaccurate. Satellite imagery through water tends to be distorted by wave movement. Radar can’t penetrate the water’s surface, and sonar doesn’t work well in the shallow water where most corals reside. That’s where drones and Chirayath’s software come in.

When Chirayath first developed his optical software, called Fluid Lensing, NASA hired the young engineer to develop a satellite concept that would image targets such as vegetation and ocean flows on Earth, as well as targets in space. Soon, Chirayath began to think about other applications for the software. After learning about widespread coral bleaching and a lack of accurate reef maps, he dreamed up a camera-equipped drone to do the job.

“I was inspired by the way the human eye works in conjunction with the brain to try to resolve an obscured image,” Chirayath said. He compared his drone-captured coral images to sketchbook pictures of a person behind a waterfall. The person’s face would be heavily distorted in a photograph, but a patient sketch artist could draw the face clearly over time. “It’s an ability to rapidly assimilate a vast amount of data and, in effect, see through strong optical distortions.”

Word of Chirayath’s Fluid Lensing experiments in water tanks at the Monterey Bay Aquarium spread quickly to Palumbi, a professor of marine sciences and director of Stanford’s nearby Hopkins Marine Station. Palumbi invited Chirayath to join him on a research trip to Ofu.

“The lensing takes a huge problem in looking through the surface of the water and turns it into an advantage,” Palumbi said. “It not only removes the ripples but uses their magnification to enhance the image.”

Read more . . .


The Latest on: Coral research
  • Seagrass in coral triangle grows better together
    on January 22, 2018 at 9:26 pm

    who served as a Ph.D. student in population biology at UC Davis during the project and currently works as a research ecologist at the Institute for Wildlife Studies. In the Coral Triangle, many species of seagrasses naturally coexist together in the clear ... […]

  • Council to talk deep-sea coral, at-sea monitors
    on January 22, 2018 at 4:19 pm

    The New England Fishery Management Council kicks off its 2018 calendar with meetings in New Hampshire on the final two days of January that will include discussions on its deep-sea coral amendment ... Archipelago Marine Research, Saltwater Inc., FlyWire ... […]

  • New coral restoration technique may boost success
    on January 21, 2018 at 1:20 pm

    Yet protecting coral is a priority because of climate implications too, and new research from SECORE International – a global network of scientists and coral conservationists – shows promise with a new coral reef restoration technique. That may prove ... […]

  • 'Serious case of negligence': Scientists blast controls on coral-eating starfish
    on January 21, 2018 at 5:51 am

    Udo Engelhardt, director of consultancy Reefcare International, claims his analyses of the crown-of-thorns (COTS) controls for 2013-15 demonstrated the "widespread and consistent failure" to protect coral cover. A fourth major crown of thorn starfish ... […]

  • Healthy coral reef sustains tourism and fisheries: Tikoibau
    on January 20, 2018 at 11:34 pm

    "Healthy coral reefs sustain the tourism and fisheries industry which ... It included morning health exercises and spending a week at the James Cook University's Orpheus Island Research Station. The participants also visited and snorkelled at the John ... […]

via Google News and Bing News

Other Interesting Posts

Leave a Reply

%d bloggers like this: