Sep 072013
 
Share

300px-Turbo_pics_004

Digital manufacturing: There is a lot of hype around 3D printing. But it is fast becoming integrated with mainstream manufacturing

PEEK through the inspection windows of the nearly 100 three-dimensional (3D) printers quietly making things at RedEye, a company based in Eden Prairie, Minnesota, and you can catch a glimpse of how factories will work in the future. It is not simply that the machines, some as big as delivery vans, run day and night attended by just a handful of technicians. Instead it is what they are making that shows how this revolutionary production process is entering the manufacturing mainstream.

3D printers make things by building them up, a layer at a time, from a particular material, rather than removing it by cutting, drilling or machining—which is why the process is also called additive manufacturing. There are many ways in which this can be done (see article), and with only a tweak of software each item can be different, without the need for costly retooling of machines. This has made 3D printing a popular way to make one-off items, especially prototype parts, mock-ups, gadgets and craft items.

And that is about all that 3D printers are good for, reckon the doubters. Chief among them is Terry Gou, the boss of Foxconn, the world’s largest contract manufacturer of electronic goods, which makes many of Apple’s products in China. He thinks 3D printing is just “a gimmick” without any commercial value in the manufacture of real finished goods, and he has vowed to start spelling his name backwards if proved wrong.

Mr Gou (or should that be Uog?) is right about one thing: additive manufacturing is not about to replace mass manufacturing. Even though the technology is improving, the finish and durability of some printed items can still fall short of what producers require. And nor can 3D printers crank out zillions of identical parts at low cost, as mass-production lines can. Nevertheless, 3D printers have their virtues, which is why they are starting to be used by some of the world’s biggest manufacturers, such as Airbus, Boeing, GE, Ford and Siemens.

The market for 3D printers and services is small, but growing fast. Last year it was worth $2.2 billion worldwide, up 29% from 2011, according to Wohlers Associates, a consultancy. As producers become more familiar with the technology, they are moving from prototypes to final products. Last year Wohlers reckons more than 25% of the 3D-printing market involved making production-ready items.

Some of those parts are taking shape in RedEye’s printers. In many cases they are low-volume items, such as components used to build specialist pharmaceutical or paper-making equipment. Other components, such as 3D-printed tools and jigs, will actually enhance mass-production: BMW’s assembly-line workers design and print custom tools to make it easier to hold and position parts. 3D-printed plastic moulds and dies are also being printed to help set up and trial new production lines. Some of these printed parts are even used as temporary stand-ins for broken steel tools, which can take weeks to replace.

Hard-to-find spare parts are also being 3D printed, in one case helping a large American airline to get some of its aircraft back into the air. The carrier was frequently having to ground its ageing McDonnell Douglas MD-80 jets because of leaking toilets. Production of these aircraft ceased long ago, and the airline was struggling to find spare parts. Its new plumbing is now being 3D printed in an aerospace-grade plastic (which does not ignite or produce noxious fumes if burned).

As 3D printers get better and printed materials improve, the quality and finish of prototypes is becoming harder to distinguish from things made in traditional factories, says Tim Thellin, RedEye’s manager. Despite the hype around desktop 3D printers aimed at hobbyists and consumers, it is the big, industrial-grade printers that are working the hardest as demand grows for printing large items, which are tricky to make with conventional methods such as plastic injection-moulding, says Mr Thellin. One example is body panels for specialist cars. These can have complex shapes, consolidating individual components that previously had to be assembled.

The inspection windows of some of RedEye’s 3D printers are covered, because these machines are making defence-related items, or their work is commercially sensitive. One that is on view is a machine printing parts for the 3D printers produced by RedEye’s parent company, Stratasys. It and another firm, called 3D Systems, are the market leaders in 3D printers.

3D Systems, based in South Carolina, also has plenty of examples of ways in which 3D printers are being used to produce finished products. An early adopter of the technology has been the health-care industry—a field in which mass customisation is useful, because every patient is different. Millions of hearing-aid shells have been 3D-printed from scans of patients’ ear canals, says Cathy Lewis, 3D Systems’ marketing chief. Initially the shells were cast from 3D-printed moulds, but with the development of printable biocompatible plastics that do not irritate the skin, they are now printed directly.

In another example, 3D Systems has worked with Align Technology of San Jose, California. Instead of using metal braces for straightening teeth, Align produces sets of transparent plastic “aligners”. A scan of the patient’s mouth is used to devise a treatment plan, which in turn generates a digital file which is used to 3D-print a set of 20 or so moulds. Each mould is slightly different, and from them a series of clear plastic braces is cast. When worn over several months, each brace steadily moves the patient’s teeth into the desired position. Last year Align 3D printed 17m of them.

Read more . . .

via The Economist
 

The Latest Streaming News: 3D printing updated minute-by-minute

Bookmark this page and come back often
 

Latest NEWS

 

Latest VIDEO

 

The Latest from the BLOGOSPHERE

Your comments and ideas are most welcome

Wordpress SEO Plugin by SEOPressor