Mar 162013
 
300px-Earth_Viewed_From_Space
Satellites could be used to beam down powerful data encryption keys that rely on entangled photos.

The vacuum of space could solve the distance problem encountered in sending quantum signals on Earth.

Scientists are pushing to create a space-based quantum communications network that could enable impossible-to-monitor transmissions.

In doing so, they might make it possible for someone named Scotty to really teleport some information into space.

It would be enough “to spook” Albert Einstein, said Thomas Jennewein of the University of Waterloo in Ontario, one of the top researchers in the field.

The encryption research could have immediate practical implications. The process would make use of entangled photons, what Einstein–who resisted the consequences of quantum theory until his death –called “spooky action at a distance.”

“If we can use correlations between entangled photons to establish a quantum key, it could be used for secure communications,” said Jennewein.

Einstein and two colleagues theorized in 1935 that if you had two quantum systems that interacted, such as two atoms in a molecule, and then separated them, they would remain entangled, meaning their properties would be inextricably linked. Measuring one atom would instantly produce a change in the other no matter how far apart they were.

Einstein believed that there was a universal speed limit: nothing could travel faster than light so he thought such communication—”spooky action”—would be impossible.

But in 1972, a group of U.S. scientists showed that is exactly what happens, at least over the short distances of their laboratory experiment.

Decades before, another physics giant, Werner Heisenberg, proposed in his famous uncertainty principle that merely observing a particle or otherwise disturbing it changes its properties, and–according to quantum theory–so instantly would that of its entangled twin.

Common encryption involves using keys, series of numbers, and letters that code and decode messages. The sender has one key that encrypts the message; the person receiving the message has another which decodes it.

Scientists can envision sending beams of quantum signals from one place to another to produce encryption keys, but there is a problem.

Quantum communications signals have not been able to travel very far on Earth. The current record is 89 miles set in the Canary Islands by Jennewein and a team, then of the University of Vienna. The problem is transmission loss or scattering in the atmosphere.

Even using fiber-optic cables is not the answer, according to Joshua Bienfang, at the National Institute of Standards and Technology, another expert in the field. The chances of a single photon traveling safely more than around 250 miles in a fiber-optic cable is slim, he said.

That’s why Jennewein and other researchers are looking to space, where the beams would not scatter in the vacuum. His lab, among others, now has produced a design for such satellites that would test that out.

Read more . . .

via Scientific American – Joel N. Shurkin and Inside Science News Service
 

The Latest Streaming News: Message Encryption Solution updated minute-by-minute

Bookmark this page and come back often
 

Latest NEWS

 

Latest VIDEO

 

The Latest from the BLOGOSPHERE

 Leave a Reply

(required)

(required)

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield

%d bloggers like this: