Feb 242013
 
Robat1
The strong, flapping flight of bats offers great possibilities for the design of small aircraft, among other applications.

By building a robotic bat wing, Brown researchers have uncovered flight secrets of real bats: the function of ligaments, the elasticity of skin, the structural support of musculature, skeletal flexibility, upstroke, downstroke.

Researchers at Brown University have developed a robotic bat wing that is providing valuable new information about dynamics of flapping flight in real bats.

The robot, which mimics the wing shape and motion of the lesser dog-faced fruit bat, is designed to flap while attached to a force transducer in a wind tunnel. As the lifelike wing flaps, the force transducer records the aerodynamic forces generated by the moving wing. By measuring the power output of the three servo motors that control the robot’s seven movable joints, researchers can evaluate the energy required to execute wing movements.

Testing showed the robot can match the basic flight parameters of bats, producing enough thrust to overcome drag and enough lift to carry the weight of the model species.

A paper describing the robot and presenting results from preliminary experiments is published in the journal Bioinspiration and Biomimetics. The work was done in labs of Brown professors Kenneth Breuer and Sharon Swartz, who are the senior authors on the paper. Breuer, an engineer, and Swartz, a biologist, have studied bat flight and anatomy for years.

The faux flapper generates data that could never be collected directly from live animals, said Joseph Bahlman, a graduate student at Brown who led the project. Bats can’t fly when connected to instruments that record aerodynamic forces directly, so that isn’t an option — and bats don’t take requests.

“We can’t ask a bat to flap at a frequency of eight hertz then raise it to nine hertz so we can see what difference that makes,” Bahlman said. “They don’t really cooperate that way.”

But the model does exactly what the researchers want it to do. They can control each of its movement capabilities — kinematic parameters — individually. That way they can adjust one parameter while keeping the rest constant to isolate the effects.

“We can answer questions like, ‘Does increasing wing beat frequency improve lift and what’s the energetic cost of doing that?’” Bahlman said. “We can directly measure the relationship between these kinematic parameters, aerodynamic forces, and energetics.”

Detailed experimental results from the robot will be described in future research papers, but this first paper includes some preliminary results from a few case studies.

Read more . . .

via Brown University
 

The Latest Streaming News: Robotic bat wing updated minute-by-minute

Bookmark this page and come back often
 

Latest NEWS

 

Latest VIDEO

 

The Latest from the BLOGOSPHERE

 Leave a Reply

(required)

(required)

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>