Jun 282012
 
Cardiac Arrest Survival

A single intravenous injection of a lipid-based gas-filled solution brought 15 minutes worth of life-saving oxygen to rabbits with completely blocked airways.

PROBLEM: Patients who can’t breathe need oxygen quickly to avoid cardiac arrest and brain injury. Unfortunately, attempts in the early 1900s to intravenously supply this essential gas failed to oxygenate the blood and often caused dangerous air bubbles. Current treatments, such as blood substitutes, breathing masks, and tubes, aren’t always effective as well since they still rely on the lungs to function or require time to properly administer.

METHODOLOGY: Researchers led by Harvard Medical School‘s John N. Kheir engineered tiny, gas-filled microparticles, which were about three micrometers in size and invisible to the naked eye. They used a device called a sonicator, which uses high-intensity sound waves, to produce a foamy liquid solution with microparticles that consist of a single layer of lipids that trap a tiny pocket of oxygen gas. They then injected the resulting mixture directly into the bloodstream of rabbits that were severely oxygen-deprived.

RESULTS: Within seconds, infusions of the microparticles restored the blood oxygen saturation of these mammals to near-normal levels. When the rabbits’ windpipes were completely blocked, the solution kept them alive for 15 minutes without a single breath and reduced the likelihood of cardiac arrest and organ injury.

Read more . . .

via The Atlantic – Hans Villarica
 

The Latest Streaming News: New Way to Breathe updated minute-by-minute

 

 

Other Interesting Posts

Leave a Reply

%d bloggers like this: