Apr 242012
 

“This technology could make a huge difference to patients suffering severe nerve damage,”

Engineers at the University of Sheffield have developed a method of assisting nerves damaged by traumatic accidents to repair naturally, which could improve the chances of restoring sensation and movement in injured limbs.

In a collaborative study with Laser Zentrum Hannover (Germany) published April 23, 2012 in the journal Biofabrication, the team describes a new method for making medical devices called nerve guidance conduits or NGCs.

The method is based on laser direct writing, which enables the fabrication of complex structures from computer files via the use of CAD/CAM (computer aided design/manufacturing), and has allowed the research team to manufacture NGCs with designs that are far more advanced than previously possible.

Currently patients with severe traumatic nerve damage suffer a devastating loss of sensation and/or movement in the affected limb. The traditional course of action, where possible, is to surgically suture or graft the nerve endings together. However, reconstructive surgery often does not result in complete recovery.

“When nerves in the arms or legs are injured they have the ability to re-grow, unlike in the spinal cord; however, they need assistance to do this,” said University of Sheffield Professor of Bioengineering, John Haycock. “We are designing scaffold implants that can bridge an injury site and provide a range of physical and chemical cues for stimulating this regrowth.”

The new conduit is made from a biodegradable synthetic polymer material based on polylactic acid and has been designed to guide damaged nerves to re-grow through a number of small channels.

“Nerves aren’t just like one long cable, they’re made up of lots of small cables, similar to how an electrical wire is constructed,” said lead author Dr Frederik Claeyssens, of the University’s Department of Materials Science and Engineering. “Using our new technique we can make a conduit with individual strands so the nerve fibres can form a similar structure to an undamaged nerve.”

Once the nerve is fully regrown, the conduit biodegrades naturally. The team hopes that this approach will significantly increase recovery for a wide range of peripheral nerve injuries.

In laboratory experiments, nerve cells added to the polymer conduit grew naturally within its channelled structure and the research team is now working towards clinical trials.

Read more . . .

via Science Digest

Bookmark this page for “Severely Damaged Nerves” and check back regularly as these articles update on a very frequent basis. The view is set to “news”. Try clicking on “video” and “2” for more articles.

 Leave a Reply

(required)

(required)

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield

%d bloggers like this: