Feb 042012
 

It significantly boosts our ability to monitor, predict, and understand cancer progression

Scientists from The Scripps Research Institute, Scripps Health, and collaborating cancer physicians have successfully demonstrated the effectiveness of an advanced blood test for detecting and analyzing circulating tumor cells (CTCs) — breakaway cells from patients’ solid tumors — from cancer patients. The findings, reported in five new papers, show that the highly sensitive blood analysis provides information that may soon be comparable to that from some types of surgical biopsies.

“It’s a next-generation technology,” said Scripps Research Associate Professor Peter Kuhn, PhD, senior investigator of the new studies and primary inventor of the high-definition blood test. “It significantly boosts our ability to monitor, predict, and understand cancer progression, including metastasis, which is the major cause of death for cancer patients.”

The studies were published February 3, 2012, in the journal Physical Biology.

The new test, called HD-CTC, labels cells in a patient’s blood sample in a way that distinguishes possible CTCs from ordinary red and white blood cells. It then uses a digital microscope and an image-processing algorithm to isolate the suspect cells with sizes and shapes (“morphologies”) unlike those of healthy cells. Just as in a surgical biopsy, a pathologist can examine the images of the suspected CTCs to eliminate false positives and note their morphologies.

Kuhn emphasizes that this basic setup can be easily modified with different cell-labeling and image-processing techniques.

Five New Studies, Five Steps Forward

To test the new technology, members of the Kuhn lab at Scripps Research teamed up with pathologists and oncologists at Scripps Health in La Jolla, California; UC San Diego Moores Cancer Center at the University of California, San Diego; the Billings Clinic in Billings, Montana; the Division of Medical Oncology at the University of California, San Francisco; the Center for Applied Molecular Medicine at the University of Southern California, in Los Angeles; and the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital in Amsterdam, the Netherlands.

The five new studies that resulted from the collaboration not only demonstrate the accuracy and effectiveness of the new test for a number of different cancer types, but also begin to explore the utility of the technology for diagnosing and monitoring patients and improving cancer research in the lab. While other tests for CTCs typically use “enrichment” steps in which suspected CTCs are concentrated — and these methods inadvertently exclude some types of CTCs — the new studies show HD-CTC works well as a no-cell-left-behind process and enables a more complete analysis.

Also striking is the quality of the images. “The high definition method gives a detailed portrait of these elusive cells that are caught in the act of spreading around the body,” said diagnostic pathologist Kelly Bethel, MD, of Scripps Health, Scripps Research, and UC San Diego School of Medicine, who is the senior clinical investigator on Kuhn’s team. “It’s unprecedented — we’ve never been able to see them routinely and in high definition like this before.”

Read more . . .
 
Bookmark this page for “cancer detection” and check back regularly as these articles update on a very frequent basis. The view is set to “news”. Try clicking on “video” and “2″ for more articles.

Your comments and ideas are most welcome

%d bloggers like this: