Jan 192012

Scientists are seeking help from microbes to produce road-ready biofuels

By tweaking the smallest units of life, scientists are making bigger gains in producing alternative and renewable energy, with recent efforts aimed at molecule-level controls and promoting fractal growth patterns to create different fuels and improve efficiencies.

Bacteria, which range from 0.5 to 5 microns in size, perform functions that can be exploited, enhanced and modified to produce fuels. As they move, breathe, eat and reproduce, bacteria produce byproducts like ethanol and hydrogen while feeding on simple sugars, starches and sunlight. The cells themselves can also be harvested for biodiesel precursors.

At the U.S. Department of Energy’s Joint BioEnergy Institute (JBEI), researchers are developing ways to control these fuel pathways with designer RNA molecules. RNA, like DNA, encodes information for cell functions, but RNA can also fold up and perform tasks, like signaling, regulating or catalyzing reactions.

Changing how the RNA folds can serve as a control knob in cellular processes — increasing, decreasing or altering activity in specific pathways — but determining how to make RNA so it folds in a particular way has long been a tedious and arduous process.

Now, using computer simulations, James Carothers and his colleagues at JBEI have sped up the RNA design phase, creating computer tools that will help researchers design molecules to precisely control gene expression in bacteria to optimize fuel production.

“The idea was to apply these engineering principles to formalize the design process,” said Carothers, who is also a research scientist at the California Institute for Quantitative Biosciences at the University of California, Berkeley.

Starting with a model organismThe team studied the bacterium Escherichia coli as a model organism, comparing how 28 RNA sequences behaved in their model and in the microbe. They found that their computer predictions accurately agreed with how the bacteria responded to the control system.

“In the long run, what we’d like to be able to do is start with a model of metabolism and then implement that genetic program,” said Carothers. “Rather than trying to do lots of trial and error, instead if you have a model for how the pathway should work, then you should make the whole [engineering] process easier and more effective.”

In other words, rather than combing through thousands of molecules seeded in thousands of bacterial cultures, a scientist may one day be able to design RNA with software akin to computer-aided drafting programs used by engineers and architects. This way, engineers can not only improve natural biofuel pathways, but create new ones.

“The next phase of biofuel production will be getting away from ethanol; it’s less energy-dense than petroleum,” said Carothers. Using these tools, Carothers expects that bacteria can renewably produce hydrocarbons already in use today, like diesel and jet fuel, creating “drop-in” replacements for fossil energy.

Read more . . .

Bookmark this page for “microbes biofuels” and check back regularly as these articles update on a frequent basis. The view is set to “news”. Try clicking on “video” and “2” for more articles.

Other Interesting Posts

Leave a Reply

%d bloggers like this: