Nov 292011
 
Macro shot of the Jr. Deluxe Burger from Sonic...

Image via Wikipedia

How much would you pay for a hamburger?

 
How about US$345,000? No, it’s not wrapped in edible gold leaf and held together with a skewer made out of a diamond stick pin that you get to keep. It’s an ordinary burger that doesn’t include the bun, lettuce, pickles or onions. It isn’t even super-sized. This may seem like price gouging on a monumental scale, but it’s actually the cost price for this particular burger. That’s because even though it is a real hamburger made from real meat, it doesn’t come from a cow at all.

Dr. Mark Post, a vascular biologist at the University of Maastricht in the Netherlands, is one of a handful of scientists around the world working on the problem of cultivating meat artificially in a laboratory. The idea is to find a way to create the meat without the animal by growing it directly. Speaking to the Reuters news agency, Dr. Post estimates that, if he succeeds, his first burger will cost a staggering $345,000, but when the technique is perfected and scaled up to industrial levels, economies of scale should kick in and make lab-grown beef (or pork or chicken or fish) as cheap, if not cheaper, than its four-legged counterpart. He also believes that the advantages of in vitro meat, as it is called, are such that it will go a long way toward alleviating world hunger and saving the environment.

It may even give the phrase “factory farming” a whole new meaning.

A long predicted dish

The idea of growing meat in a vat without the animal middle-creature has been around longer than many people realize. The most famous prediction of the coming of in vitro meat was from none other than Winston Churchill. During his “wilderness years” of the early 1930s when he was out of political favor, Churchill passed the time by writing and one essay penned for Popular Mechanics magazine in March 1932 dealt with predictions of what life would be like fifty years ahead in far off 1982. In this he wrote – “We shall escape the absurdity of growing a whole chicken in order to eat the breast or wing, by growing these parts separately under a suitable medium.”

Chicken heart

Growing a chicken leg bone and all wasn’t even a remote possibility in the real 1982, but Churchill did have some basis for his prediction that this would come about within a half century. He probably based it on the work of Dr. Alexis Carrel, a French surgeon and biologist working in New York City in the first half of the 20th century. There at the Rockefeller Institute of Medical Research, Dr. Carrel conducted a unique experiment when in 1912 he cultivated tissues from an embryo chicken heart. By constantly bathing it in a nutrient solution, Dr. Carrel was able to keep the heart tissue alive and growing until 1942, when it died after a lab assistant forgot to feed it.

The “chicken heart” (actually, just a bit of tissue suspended on silk gauze) was Carrel’s best known project and the heart was something of a minor celebrity with newspapers sending it birthday greetings every year. Carrel himself thought that the longevity of the heart pointed to the secret of immortality. Perhaps living cells freed from the burden of sustaining an entire organism could reproduce infinitely and live forever. This was in line with the thinking of the day and Carrel’s work seemed to prove it. If this was indeed the case, then supplying the animal protein needs of the world might be as simple as raising mushrooms.

Certainly the public seemed to think so, since stories in the popular press talked about the chicken heart as being a large mass of flesh that grew so much that it was forever in danger of bursting from its container and needing to be periodically trimmed to keep it in check. In their 1952 science fiction novel The Space Merchants, Frederick Pohl and C M Kornbluth described a future farm where Carrel’s chicken heart is grown into a lump of flesh weighing hundreds of tons and is serviced by butchers who trim off steaks from it with great flensing knives like those used by whalers. Radio author Arch Oebler took this a step further in his short radio play “Chicken Heart” where Carrel’s experiment breaks loose and devours the entire United States. Comedian Bill Cosby claimed in his stand-up routine that he found this story so frightening as a child that he smeared Jell-O on the floor and set fire to the couch to keep the monster at bay. He said his father’s reaction to this was for years after to call strangers into the house to see his “dumb kid”.

So why didn’t Carrel’s experiment lead to a world of chicken heart fast food franchises? It was simply because the experiment was indeed unique-literally. After Carrel died in 1944, many scientists tried to duplicate his experiment, but none succeeded. In fact, as more was understood about the nature of living tissue, it became clear that Carrel’s experiment should never have worked. Cells of the type Carrel used should only have reproduced a certain number of times and then die. They certainly shouldn’t have kept on growing for decades. No one is certain what happened, but one theory is that Carrel’s nutrient solution, which was derived from animal tissue, kept reintroducing fresh cells that replaced the ones that died. Whatever the truth was, the conclusion was that cultivating meat wasn’t as simple as first thought.

Still, the idea remained. In the 1970s, the New Scientist magazine ran a satirical column about the fictitious and ethically-challenged DREADCO corporation that allegedly experimented on new ways to cultivate meat, such as genetically engineering alligators with salamander DNA so their huge, meaty tails fell off when grabbed with huge tongs or taking an elephant’s trunk, hooking it up to a heart/lung machine and then hooking the other end to a machine that induced the trunk to grow by applying tension. The growing trunk would then be automatically wrapped in pastry and passed through an oven to produce a continuous stream of fresh, delicious elephant trunk pie. Meanwhile, on a more practical tack, food scientists in the wake of the food shortages after the Second World War often speculated on the possibility of manufacturing meat and NASA showed periodic interest in the idea as a way of feeding astronauts on extremely long space missions. In recent years, the animal rights organization PETA offered a $1 million prize for anyone who could come up with a commercially successful way of cultivating meat as a way to reduce livestock farming, which PETA regards as inhumane.

How to grow a steak

We hear so much about so many biomedical miracles – from mapping the thoughts in the human brain to transplanting entire cardiopulmonary systems – that we tend to think that growing meat in a lab must be easy. It isn’t expected to be hooked up to someone’s body. It just has to lie there and be cooked – preferably with a bit of rosemary and a dash of pepper. But, in fact, cultivating meat is in many ways as difficult as growing a transplant organ. In some very fundamental aspects, the two are identical. So difficult is the problem that it wasn’t until the development of cloning and stem cell research that anyone took the idea of growing a steak seriously.

Read more . . .
 
Bookmark this page for “lab-grown meat” and check back regularly as these articles update on a very frequent basis. The view is set to “news”. Try clicking on “video” and “2” for more articles.

Other Interesting Posts

Leave a Reply

%d bloggers like this: