Oct 072011
 
Image representing Sun Catalytix as depicted i...

Image via CrunchBase

The sun is the most abundant power source on Earth, but new designs soon hitting the market could keep its energy flowing even after sunset

Researchers are exploring various strategies to put sunshine on tap, converting the sun’s energy into fuels that can be stored, transported and used as needed. Setting excess power aside can help solar produce consistent electricity throughout the day, diminishing one of solar energy’s biggest drawbacks. Sun-derived fuels can also be used to power that drive cars or provide heat to warm homes.

One storage method is hydrogen from a thin, flat solar leaf.

“The way this works it the leaf sample is illuminated. The sample absorbs that light and generates electrons,” said Tom Jarvi, chief technology officer at Sun Catalytix, the company bringing the technology to the market. He said the free electrons on the leaf’s surface then interact with water, catalyzing its split into oxygen on the leaf’s light side and hydrogen on the dark side. The mechanism mimics how plants convert sunlight into energy, hence “leaf.”

Jarvi, along with lead researcher Daniel Nocera, a professor of energy and chemistry at the Massachusetts Institute of Technology, co-authored a paper demonstrating this device last week in the journal Science.

“This particular result is a combination of several things that have not been pulled together in the past,” said Jarvi. In the paper, the leaf was wireless, with no external inputs or electrodes, and was made with low-cost materials like silicon and cobalt. In addition, the device yielded 2.5 percent efficiency in converting light to hydrogen.

The goal now is to reduce costs even further while increasing the system’s efficiency.

“Our real, sincere focus at this point is springboarding off this leaf result and working on the nanoscale,” said Jarvi. Mike Decelle, president and CEO of Sun Catalytix, said the current strategy is to create nanoparticles that can produce hydrogen from water. “The way to visualize this is that instead of a large-scale solar cell, you have billions of solar cells,” said Decelle. “That will deliver the lowest-cost hydrogen we’re striving for.”

Trapping heat as well as energy

Solar energy can also be used to produce conventional carbon-based fuels, like gasoline. The advantage of this system is that the infrastructure to make and use the fuel is already in place.

Read more . . .

Bookmark this page for “lowest-cost hydrogen” and check back regularly as these articles update on a very frequent basis. The view is set to “news”. Try clicking on “video” and “2” for more articles.

Other Interesting Posts

Leave a Reply

%d bloggers like this: