Jul 152011
 
This animation of a rotating carbon nanotube g...

Image via Wikipedia

While solar panels are very useful at converting the sun’s rays into electricity for immediate use, the storage of that energy for later use is … well, it’s still being figured out.

The energy can be used to charge batteries, for instance, but that charge will wear off over time. Instead, scientists have been looking at thermo-chemical storage of solar energy. Last year, researchers from MIT discovered that the chemical fulvalene diruthenium was quite an effective storage medium. Unfortunately, the ruthenium element that it contains is rare and expensive. Now, however, one of those same scientists has created a new storage material that is cheaper, and is able to store much more energy.

The advantage of thermo-chemical storage in general is that the chemicals can be stored for long periods, without experiencing any energy loss. Suitable chemicals that don’t contain the pricey ruthenium, however, have tended to degrade within just a few storage cycles.

MIT associate professor Jeffrey Grossman, who led the research last year, has now developed something better. He and postdoc Alexie Kolpak combined carbon nanotubes with the compound azobenzene, the result being a chemical that is less expensive than fulvalene diruthenium, and that has about 10,000 times the volumetric energy density – in other words, it can store more energy in less space.

Kolpak claims that its energy density is similar to that of a lithium-ion battery. By utilizing different methods of nanofabrication, it is also possible to independently control both how much energy can be stored, and how long it can be stored for.

Read more . . .

Enhanced by Zemanta

Other Interesting Posts

Leave a Reply

%d bloggers like this: