Jun 242011
 

Austrian research company IAT21 has presented a new type of aircraft at the Paris Air Show which has the potential to become aviation’s first disruptive technology since the jet engine.

The D-Dalus (a play on Daedalus from Greek mythology) is neither fixed wing or rotor craft and uses four, mechanically-linked, contra-rotating cylindrical turbines, each running at the same 2200 rpm, for its propulsion.

The key to the D-Dalus’ extreme maneuverability is the facility to alter the angle of the blades (using servos) to vector the forces, meaning that the thrust can be delivered in your choice of 360 degrees around any of the three axes. Hence D-Dalus can launch vertically, hover perfectly still and move in any direction, and that’s just the start of the story.

Like most cars and aircraft these days, it sounds very complex but it’s all controlled by computer algorithms, so it’s simple joystick control for the user, and far less exacting than a helicopter to fly.

Existing rotary wing aircraft offer VTOL capabilities but have vulnerabilities which make them unsuitable for many applications. They are challenged in bad weather, at long ranges, at high speed and in operating to and from lurching platforms, such as boats in rough weather.

By contrast, D-Dalus is particularly suited for such conditions and can thrust upwards and hence “glue down” on landing, which it can also do on a moving vehicle. Indeed, landing on a moving vehicle is one of the D-Dalus’ many party tricks, and it’s a natural for landing on watercraft. Not surprisingly, since it initially broke cover at the Royal Aeronautical Society conference a few days ago, it has already attracted a lot of interest from military quarters.

Read more . . .

Enhanced by Zemanta

Other Interesting Posts

  One Response to “D-Dalus: Aviation’s first disruptive technology since the jet engine”

  1. Technology Submission – State of the Art – Novel InFlow Tech – Featured Project Development; / ·1; Rotary-Turbo-InFlow Tech / – GEARTURBINE PROJECT Have the similar basic system of the Aeolipilie Heron Steam Turbine device from Alexandria 10-70 AD * With Retrodynamic = DextroRPM VS LevoInFlow + Ying Yang Way Power Type – Non Waste Looses *8X/Y Thermodynamic CYCLE Way Steps. Higher efficient percent. No blade erosion by sand & very low heat target signature Pat:197187IMPI MX Dic1991 Atypical Motor Engine Type /·2; Imploturbocompressor; One Moving Part System Excellence Design – The InFlow Interaction comes from Macro-Flow and goes to Micro-Flow by Implossion – Only One Compression Step; Inflow, Compression and outflow at one simple circular dynamic motion / New Concept. To see a Imploturbocompressor animation, is posible on a simple way, just to check an Hurricane Satellite view, and is the same implo inflow way nature.

Leave a Reply

%d bloggers like this: