May 082011
 

A team of researchers at MIT has found a way to manipulate both the thermal conductivity and the electrical conductivity of materials simply by changing the external conditions, such as the surrounding temperature.

And the technique they found can change electrical conductivity by factors of well over 100, and heat conductivity by more than threefold.

“It’s a new way of changing and controlling the properties” of materials — in this case a class called percolated composite materials — by controlling their temperature, says Gang Chen, MIT’s Carl Richard Soderberg Professor of Power Engineering and director of the Pappalardo Micro and Nano Engineering Laboratories. Chen is the senior author of a paper describing the process that was published online on April 19 and will appear in a forthcoming issue ofNature Communications. The paper’s lead authors are former MIT visiting scholars Ruiting Zheng of Beijing Normal University and Jinwei Gao of South China Normal University, along with current MIT graduate student Jianjian Wang. The research was partly supported by grants from the National Science Foundation.

The system Chen and his colleagues developed could be applied to many different materials for either thermal or electrical applications. The finding is so novel, Chen says, that the researchers hope some of their peers will respond with an immediate, “I have a use for that!”

One potential use of the new system, Chen explains, is for a fuse to protect electronic circuitry. In that application, the material would conduct electricity with little resistance under normal, room-temperature conditions. But if the circuit begins to heat up, that heat would increase the material’s resistance, until at some threshold temperature it essentially blocks the flow, acting like a blown fuse. But then, instead of needing to be reset, as the circuit cools down the resistance decreases and the circuit automatically resumes its function.

Another possible application is for storing heat, such as from a solar thermal collector system, later using it to heat water or homes or to generate electricity. The system’s much-improved thermal conductivity in the solid state helps it transfer heat.

Read more . . .

 

Other Interesting Posts

Leave a Reply

%d bloggers like this: