Apr 262011
 

Conventional silicon-based rigid solar cells generally found on the market are not suitable for manufacturing moldable thin-film solar cells, in which a transparent, flexible and electrically conductive electrode collects the light and carries away the current.

A woven polymer electrode developed by Empa has now produced first results which are very promising, indicating that the new material may be a substitute for indium tin oxide coatings.

The scarcity of raw materials and increasing usage of rare metals is making electronic components and devices more and more costly. Such rare metals are used, for example, to make the transparent electrodes found in mobile phone touchscreen displays, liquid-crystal displays, organic LEDs and thin-film solar cells. The material of choice in these cases is indium tin oxide (ITO), a largely transparent mixed oxide. Because ITO is relatively expensive, however, it is uneconomic to use in large area applications such as solar cells.

The search for alternatives

Indium-free transparent oxides do exist, but with demand for them increasing they too are tending to become scarce. In addition, the principal disadvantages such as brittleness remain. The search for alternative coatings which are both transparent and electrically conductive is therefore intense, with materials such as conductive polymers, carbon nanotubes or graphenes coming under scrutiny. Carbon-based electrodes, however, generally show excessive surface resistance values which make them poor electrical conductors. If a metallic grid is integrated into the organic layer, it reduces not just its resistance but also its mechanical stability. If a solar cell made out of this material is bent, the electrode layers break and are no longer conductive. The challenge thus consists of manufacturing flexible yet stable conductive substrates, ideally in a cost-effective industrial rolling process.

Read more . . .

 

Enhanced by Zemanta

The Latest on: Flexible Thin-Film Solar Cells

Other Interesting Posts

Leave a Reply

%d bloggers like this: