Mar 062011
 
Eutrophication is caused by the enrichment of ...

Image via Wikipedia

A team of chemical engineers at the University of Arkansas has developed a method for converting common algae into butanol, a renewable fuel that can be used in existing combustible engines.

The green technology benefits from and adds greater value to a process being used now to clean and oxygenate U.S. waterways by removing excess nitrogen and phosphorus from fertilizer in runoff.

“We can make cars go,” said Jamie Hestekin, assistant professor and leader of the project. “Our conversion process is efficient and inexpensive. Butanol has many advantages compared to ethanol, but the coolest thing about this process is that we’re actually making rivers and lakes healthier by growing and harvesting the raw material.”

Hestekin and his research team — undergraduates from the Honors College and several graduate students, including a doctoral student who has discovered a more efficient and technologically superior fermentation method — grow algae on “raceways,” which are long troughs — usually 2 feet wide and ranging from 5-feet to 80-feet long, depending on the scale of the operation. The troughs are made of screens or carpet, although Hestekin said algae will grow on almost any surface.

Algae survive on nitrogen, phosphorus, carbon dioxide and natural sunlight, so the researchers grow algae by running nitrogen- and phosphorus-rich creek water over the surface of the troughs. They enhance this growth by delivering high concentrations of carbon dioxide through hollow fiber membranes that look like long strands of spaghetti. Municipal and state governments, primarily on the East Coast, have implemented large-scale processes similar to this to address so-called “dead zones,” where excess nitrogen and phosphorus have killed fish and plants.

The researchers harvest the algae every five to eight days by vacuuming or scraping it off the screens. After waiting for it to dry, they crush and grind the algae into a fine powder as the means to extract carbohydrates from the plant cells. Carbohydrates are made of sugars and starches. For this project, Hestekin’s team works with starches. They treat the carbohydrates with acid and then heat them to break apart the starches and convert them into simple, natural sugars. They then begin a unique, two-step fermentation process in which organisms turn the sugars into organic acids — butyric, lactic and acetic.

Read more . . .

 

Enhanced by Zemanta

Other Interesting Posts

Leave a Reply

%d bloggers like this: