Jan 032011
 
Image by Getty Images via Daylife

When bees sting, they pump poison into their victims. Now the toxin in bee venom has been harnessed to kill tumor cells by researchers at Washington University School of Medicine in St. Louis. The researchers attached the major component of bee venom to nano-sized spheres that they call nanobees.

In mice, nanobees delivered the bee toxin melittin to tumors while protecting other tissues from the toxin’s destructive power. The mice’s tumors stopped growing or shrank. The nanobees’ effectiveness against cancer in the mice is reported in advance online publication Aug. 10 in the Journal of Clinical Investigation.

“The nanobees fly in, land on the surface of cells and deposit their cargo of melittin which rapidly merges with the target cells,” says co-author Samuel Wickline, M.D., who heads the Siteman Center of Cancer Nanotechnology Excellence at Washington University. “We’ve shown that the bee toxin gets taken into the cells where it pokes holes in their internal structures.”

Melittin is a small protein, or peptide, that is strongly attracted to cell membranes, where it can form pores that break up cells and kill them.

“Melittin has been of interest to researchers because in high enough concentration it can destroy any cell it comes into contact with, making it an effective antibacterial and antifungal agent and potentially an anticancer agent,” says co-author Paul Schlesinger, M.D., Ph.D., associate professor of cell biology and physiology. “Cancer cells can adapt and develop resistance to many anticancer agents that alter gene function or target a cell’s DNA, but it’s hard for cells to find a way around the mechanism that melittin uses to kill.”

The scientists tested nanobees in two kinds of mice with cancerous tumors. One mouse breed was implanted with human breast cancer cells and the other with melanoma tumors. After four to five injections of the melittin-carrying nanoparticles over several days, growth of the mice’s breast cancer tumors slowed by nearly 25 percent, and the size of the mice’s melanoma tumors decreased by 88 percent compared to untreated tumors.

Read more . . .

Reblog this post [with Zemanta]

Other Interesting Posts

Leave a Reply

%d bloggers like this: