Mar 102010
 

Carbon Nanotube

Scientists have discovered that a moving pulse of heat traveling along the miniscule wires known as carbon nanotubes can cause powerful waves of energy.

These “thermopower waves” can drive electrons along like a collection of flotsam propelled along the surface of ocean waves, creating an electrical current. The previously unknown phenomenon opens up a new area of energy research and could lead to a new way of producing electricity.

The team of scientists at MIT coated the electrically and thermally conduction carbon nanotubes with a layer of reactive fuel that can produce heat by decomposing. This fuel was then ignited at one end of the nanotube using either a laser beam or a high-voltage spark, and the result was a fast-moving thermal wave traveling along the length of the carbon nanotube like a flame speeding along the length of a lit fuse. Heat from the fuel goes into the nanotube, where it travels thousands of times faster than in the fuel itself.

As the heat feeds back to the fuel coating, a thermal wave is created that is guided along the nanotube. With a temperature of 3,000 kelvins, this ring of heat speeds along the tube 10,000 times faster than the normal spread of this chemical reaction.

It is the heating produced by that combustion that also pushes electrons along the tube, creating a substantial electrical current.

Combustion waves — like this pulse of heat hurtling along a wire — “have been studied mathematically for more than 100 years,” says Michael Strano, MIT’s Charles and Hilda Roddey Associate Professor of Chemical Engineering, but he was the first to predict that such waves could be guided by a nanotube or nanowire and that this wave of heat could push an electrical current along that wire.

In the group’s initial experiments, Strano says, when they wired up the carbon nanotubes with their fuel coating in order to study the reaction, “lo and behold, we were really surprised by the size of the resulting voltage peak” that propagated along the wire. After further development, the system now puts out energy, in proportion to its weight, about 100 times greater than an equivalent weight of lithium-ion battery.

Read more . . .

Enhanced by Zemanta

Other Interesting Posts

Leave a Reply

%d bloggers like this: